Закон ома для постоянного тока определение

Главная

Вспомни физику:
7 класс
8 класс
9 класс
10-11 класс
видеоролики по физике
мультимедиа 7 кл.
мультимедиа 8 кл.
мультимедиа 9 кл.
мультимедиа 10-11 кл.
астрономия
тесты 7 кл.
тесты 8 кл.
тесты 9 кл.
демонстрац.таблицы
ЕГЭ
физсправочник

Книги по физике
Умные книжки

Есть вопросик?

Его величество.

Музеи науки.

Достижения.

Викторина по физике

Физика в кадре

Учителю

Читатели пишут

ЗАКОНЫ ПОСТОЯННОГО ТОКА

Электрический ток — упорядоченное движение заряженных частиц ( свободных электронов или ионов).
При этом через поперечное сечение проводника перносится эл. заряд ( при тепловом движении заряженных частиц суммарный перенесенный эл. зпряд = 0, т.к. положительные и отрицательные заряды компенсируются).

Направление эл. тока — условно принято считать направление движения положительно заряженных частиц ( от + к — ).

Действия эл. тока ( в проводнике):

тепловое действие тока — нагревание проводника ( кроме сверхпроводников);

химическое действие тока — проявляется только у электролитов, На электродах выделяются вещества, входящие в состав электролита;

магнитное действие тока ( основное ) — наблюдается у всех проводников (отклонение магнитной стрелки вблизи проводника с током и силовое действие тока на соседние проводники посредством магнитного поля).

Количественная характеристика эл. тока.

Сила тока — это отношение заряда q, перенесенного через поперечное сечение проводника за интервал времени t к этому интервалу.

Постоянный ток — эл. ток, у которого сила тока со временем не меняется.

Сила тока зависит от заряда частицы, концентрации частиц, скорости направленного движения частиц и площади поперечного сечения проводника.

где S — площадь поперечного сечения проводника, qo — эл. заряд частицы,
n — концентрация частиц, v — скорость упорядоченного движения электронов.

Единица измерения силы тока:

Условия, необходимые для существования электрического тока:

— наличие свободных электрически заряженных частиц;

— наличие внутри проводника эл.поля действующего с силой на заряженные частицы для их упорядоченного движения ( свободные электроны по инерции , без действия силы, перемещаться не могут из-за тормозящего воздействия на них кристаллической решетки).

Если в проводнике существует эл. поле, то между концами проводника есть разность потенциалов.
Если разность потенциалов постоянна во времени , в проводнике течет постоянный ток.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

где U — напряжение на концах участка цепи, R — сопротивление участка цепи. (сам проводник тоже можно считать участком цепи).

Для каждого проводника существует своя определенная вольт-амперная характеристика.

— основная электрическая характеристика проводника.
— по закону Ома эта величина постоянна для данного проводника.

1 Ом — это сопротивление проводника с разностью потенциалов на его концах
в 1 В и силой тока в нем 1 А.

Сопротивление зависит только от свойств проводника:

где S — площадь поперечного сечения проводника, l — длина проводника,
ро — удельное сопротивление, характеризующее свойства вещества проводника.

— состоят из источника, потребителя электрического тока, проводов, выключателя.

ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

I — сила тока в цепи
U — напряжение на концах участка цепи
R — полное сопротивление участка цепи

ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ

I — сила тока в неразветвленном участке цепи
U — напряжение на концах участка цепи
R — полное сопротивление участка цепи

Вспомни, как подключаются измерительные приборы:

Амперметр — включается последовательно с проводником, в котором измеряется сила тока.

Вольтметр — подключается параллельно проводнику , на котором измеряется напряжение.

Другие страницы по теме «Электричество» за 10-11 класс:

class-fizika.narod.ru

Постоянный ток — общие понятия, определение, единица измерения, обозначение, параметры

Постоянный ток — электрический ток, не изменяющийся по времени и по направлению. За направление тока принимают направление движения положительно заряженных частиц. В том случае, если ток образован движением отрицательно заряженных частиц, направление его считают противоположным направлению движения частиц.

Наиболее распространенные источники постоянного тока — гальванические элементы, аккумуляторы, генераторы постоянного тока и выпрямительные установки.

Для количественной оценки тока в электрической цепи служит понятие силы тока.

Сила тока — это количество электричества Q, протекающее через поперечное сечение проводника в единицу времени.

Если за время I через поперечное сечение проводника переместилось количество электричества Q, то сила тока I=Q/ t

Единица измерения силы тока — ампер (А).

Плотность тока — это отношение силы тока I к площади поперечного сечения F проводника δ = I/F. (12)

Единица измерения плотности тока — ампер на квадратный миллиметр (А/мм 2 ).

В замкнутой электрической цепи постоянный ток возникает под действием источника электрической энергии, который создает и поддерживает на своих зажимах разность потенциалов, измеряемую в вольтах (В).

Зависимость между разностью потенциалов (напряжением) на зажимах электрической цепи, сопротивлением и током в цепи выражается законом Ома . Согласно этому закону для участка однородной цепи сила тока прямо пропорциональна значению приложенного напряжения и обратно пропорциональна сопротивлению I = U/R ,

где I — сила тока. A, U— напряжение на зажимах цепи В, R — сопротивление, Ом

Это самый важный электротехнический закон. Подробнее о нем смотрите здесь: Закон Ома для участка цепи

Работу, совершаемую электрическим током в единицу времени (секунду), называют мощностью и обозначают буквой Р. Эта величина характеризует интенсивность совершаемой током работы.

Мощность P=W/t = UI

Единица измерения мощности — ватт (Вт).

Выражение мощности электрического тока можно преобразовать, заменив на основании закона Ома напряжение U произведением IR. В результате получим три выражения мощности электрического тока P = UI = I 2 R= U 2 /R

Большое практическое значение имеет то, что одну и ту же мощность электрического тока можно получить при низком напряжении и большой силе тока или при высоком напряжении и малой силе тока. Этот принцип используют при передаче электрической энергии на расстояния.

Ток, протекая по проводнику, выделяет теплоту и нагревает его. Количество теплоты Q, выделяющейся в проводнике определяют формулой Q = I 2 Rt.

Эту зависимость называют законом Джоуля — Ленца .

На основании законов Ома и Джоуля — Ленца можно проанализировать опасное явление, которое часто возникает при непосредственном соединении между собой проводников, подводящих электрический ток к нагрузке (электроприемнику). Это явление называют коротким замыканием , так как ток начинает протекать более коротким путем, минуя нагрузку. Такой режим является аварийным.

На рисунке приведена схема включения лампы накаливания E L в электрическую сеть. Если сопротивление лампы R — 500 Ом, а напряжение сети U= 220 В, то ток в цепи лампы будет I = 220/500 = 0,44 А.

Схема, поясняющая возникновение короткого замыкания

Рассмотрим случай, когда провода, идущие к лампе накаливания, соединены через очень малое сопротивление ( R ст — 0,01 Ом), например толстый металлический стержень. В этом случае ток цепи, подходя к точке А, будет разветвляться по двум направлениям: большая его часть пойдет по пути с малым сопротивлением — по металлическому стержню, а небольшая часть тока I л.н — по пути с большим сопротивлением — лампе накаливания.

Определим ток, протекающий по металлическому стержню: I = 220/0,01 = 22 000 А.

При коротком замыкании (к.з) напряжение сети будет меньше 220 В, так как большой ток в цепи вызовет большую потерю напряжения, и ток, протекающий по металлическому стержню, будет несколько меньше, но тем не менее во мною раз превышать ток, потреблявшийся ранее лампой накаливания.

Как известно, в соответствии с законом Джоуля-Ленца ток, проходя по проводам, выделяет теплоту, и провода нагреваются. В нашем примере площадь поперечного сечения проводов рассчитана на небольшой ток 0,44 А.

При соединении проводов более коротким путем, минуя нагрузку, по цепи будет протекать очень большой ток — 22000 А. Такой ток вызовет выделение большого количества теплоты, что приведет к обугливанию и возгоранию изоляции, расплавлению материала проводов, порче электроизмерительных приборов, оплавлению контактом выключателей, ножей рубильнике и т. п.

Источник электрической энергии, питающий такую цепь, может быть поврежден. Перегрев проводов может вызвать пожар. Вследствие этого при монтаже и эксплуатации электрических установок, чтобы предупредить непоправимые последствия короткого замыкания, необходимо соблюдать следующие условии: изоляция проводов должна соответствовать напряжению сети и условиям работы.

Площадь поперечною сечения проводов должна быть такой, чтобы нагревание их при нормальной нагрузке не достигало опасного значения. Места соединений и ответвлений проводов должны быть качественно выполнены и хорошо изолированы. В помещении провода должны быть проложены так, чтобы они были защищены от механических и химических повреждений и от сырости.

Чтобы избежать внезапного, опасного увеличения тока в электрической цепи при коротком замыкании, ее защищают с помощью предохранителей или автоматических выключателей.

Существенный недостаток постоянного тока состоит в том, что его напряжение сложно повысить. Это затрудняет передачу электрической энергии на постоянном токе на большие расстояния.

electricalschool.info

Официальный сайт АНО ДО Центра «Логос», г.Глазов

ГОТОВИМСЯ К УРОКУ

постоянный электрический ток немного о физике:

Что называют электрическим током?

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным , если сила тока и его направление не меняются с течением времени.

Условия существования постоянного электрического тока.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t — время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность тока, S площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил, q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника, S — площадь поперечного сечения проводника.

Проводимостью называется величина, обратная сопротивлению

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке, R — сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где φ1 — φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи, r — электрическое сопротивление внутреннего участка цепи.

Из закона Ома для полной цепи следует, что сила тока в цепи с заданным источником тока зависит только от сопротивления внешней цепи R .

Если к полюсам источника тока подсоединить проводник с сопротивлением R

nika-fizika.narod.ru

Закон Ома для цепей переменного и постоянного тока

Закон Ома является одним из основных законов электротехники. Он довольно прост и применяется при расчете практически любых электрических цепей. Но данный закон имеет некоторые особенности работы в цепях переменного и постоянного тока при наличии в цепи реактивных элементов. Эти особенности нужно помнить всегда.

Закон Ома для цепи постоянного тока

Классическая схема закона Ома выглядит так:

А звучит и того проще – ток, протекающей на участке цепи, будет равен отношению напряжения цепи к ее сопротивлению, что выражается формулой:

Но ведь мы знаем, что помимо активного сопротивления R, существует и реактивные сопротивления индуктивности ХL и емкости XC. А ведь согласитесь, что электрические схемы с чисто активным сопротивлением встречаются крайне редко. Давайте рассмотрим схему, в которой последовательно включена катушка индуктивности L, конденсатор С и резистор R:

Помимо чисто активного сопротивления R, индуктивность L и емкость С имеют и реактивные сопротивления ХL и XC, которые выражены формулами:

Где ω это циклическая частота сети, равная ω = 2πf. f – частота сети в Гц.

Для постоянного тока частота равна нулю (f = 0), соответственно реактивное сопротивление индуктивности станет равным нулю (формула (1)), а емкости – бесконечности (2), что приведет к разрыву электрической цепи. Отсюда можно сделать вывод, что реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для цепи переменного тока

Если рассматривать классическую электрическую цепь и на переменном токе, то она практически ничем не будет отличаться от постоянного тока, только источником напряжения (вместо постоянного — переменное):

Соответственно и формула для такого контура останется прежней:

Но если мы усложним схему и добавим к ней реактивных элементов:

Ситуация изменится кардинально. Теперь f у нас не равна нулю, что сигнализирует о том, что помимо активного, в цепь вводится и реактивное сопротивление, которое также может влиять на величину тока, протекаемого в контуре и приводить к резонансу. Теперь полное сопротивление контура (обозначается как Z) и оно не равно активному Z ≠ R. Формула примет следующий вид:

Соответственно немного изменится и формула для закона Ома:

Почему это важно?

Знание этих нюансов позволит избежать серьезных проблем, которые могут возникнуть при неправильном подходе к решению некоторых электротехнических задач. Например, в контур переменного напряжения подключена катушка индуктивности со следующими параметрами: fном = 50 Гц, Uном = 220 В, R = 0,01 Ома, L = 0,03 Гн. Ток, протекающий через данную катушку будет равен:

В случае, если подать на эту же катушку постоянное напряжение с таким же значением, получим:

Мы видим, что ток катушки возрастает в разы, что приводит к выходу из строя элементов контура.

elenergi.ru

Научно-технический энциклопедический словарь .

Смотреть что такое «ЗАКОН ОМА» в других словарях:

ЗАКОН ОМА — один из основных законов электрического тока, согласно которому сила постоянного электрического тока / на участке электрической цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна электрическому сопротивлению R данного… … Большая политехническая энциклопедия

закон Ома — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Ohm s law … Справочник технического переводчика

Закон Ома — Классическая электродинамика … Википедия

закон Ома — Ohmo dėsnis statusas T sritis automatika atitikmenys: angl. Ohm s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d Ohm, f ryšiai: sinonimas – Omo dėsnis … Automatikos terminų žodynas

закон Ома — Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law vok. Ohmsches Gesetz, n rus. закон Ома, m pranc. loi d’Ohm, f … Fizikos terminų žodynas

закон Ома для магнитной цепи — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Rowland law … Справочник технического переводчика

Закон Ома для полной цепи — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона … Википедия

закон Ома в акустике — akustinis Omo dėsnis statusas T sritis fizika atitikmenys: angl. Ohm’s law of acoustics vok. akustisches Ohmsches Gesetz, n rus. закон Ома в акустике, m pranc. loi d’Ohm de l’acoustique, f … Fizikos terminų žodynas

Акустический закон Ома — Феномен, заключающийся в том, что аудиальная система человека выполняет (в весьма приблизительном виде) анализ Фурье, разделяя сложную звуковую волну на составляющие ее компоненты. Функционально это означает, что в определенных пределах человек… … Психология ощущений: глоссарий

обобщённый закон Ома — Соотношение, устанавливающее тензорную связь между вектором плотности электрического тока и системой обобщённых сил, вызывающих его протекание … Политехнический терминологический толковый словарь

dic.academic.ru