Правила взаимодействия зарядов

Закон Кулона количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установлен при помощи эксперимента и не следует ни из какого другого закона природы. Он сформулирован для неподвижных точечных зарядов в вакууме. В реальности точечных зарядов не существует, но такими можно считать заряды, размеры которых значительно меньше расстояния между ними. Сила взаимодействия в воздухе почти не отличается от силы взаимодействия в вакууме (она слабее менее чем на одну тысячную).

Шарль Огюстен Кулон использовал для определения силы взаимодействия зарядов крутильные весы, которые состоят из палочки, подвешенной на проволочке. На одном конце палочки был закреплён бузиновый шарик, на другом — противовес; ещё один такой же бузиновый шарик был закреплён на крышке весов. Его достали, зарядили, привели в соприкосновение с первым шариком, врезультате чего оба шарика приобрели заряд одного знака и стали отталкиваться, при этом проволока весов закрутилась на угол &#9451. После этого шарики сблизили до угла &#9452= &#9451/2, при этом верхний конец нити пришлось повернуть на 7/2&#9451, то есть общий угол закручивания нити составил 4&#9451. Так как сила, упругости при деформации кручения прямо пропорциональна углу закручивания, то она увеличилась в 4 раза, следовательно, увеличилась в 4 раза и сила отталкивания. Углы закручивания были малыми, поэтому расстояние между шариками уменьшилось во столько же раз, во сколько и угол, то есть в 2 раза. Отсюда следует, что сила взаимодействия зарядов обратно пропорциональна квадрату расстояния между ними. После этого одного из шариков касались таким же незаряженным, заряд уменьшался в 2 раза, во столько же раз уменьшалась и сила взаимодействия, следовательно, она прямо пропорциональна произведению зарядов. Обобщив эти выводы, в 1785 году Кулон установил

Закон Кулона: сила взаимодействия двух точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160 |q1||q2|
F=k &#8212&#8212&#8212&#8212&#8212.
&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160 r 2

Эта сила называется кулоновской. Она направлена вдоль прямой, соединяющей тела, то есть является центральной. Кулоновская сила может быть как силой притяжения, так и силой отталкивания; положительной считают силу отталкивания. Поэтому закон Кулона можно записать в векторном виде:
® &#160&#160&#160&#160&#160&#160&#160&#160&#160&#160 q1q2 &#160&#160&#160&#160&#160&#160&#160 ®
F12=k&#8212&#8212&#8212&#8212&#8212 r12.
&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160&#160 r12 3

Закон Кулона по форме похож на закон всемирного тяготения. Сила взаимодействия двух тел, обладающих массой, пропорциональна произведению их масс, а сила взаимодействия тел, обладающих зарядом пропорциональна произведению их зарядов. Сила обоих взаимодействий обратно пропорциональна квадрату расстояния между телами. Но гравитационные силы — всегда силы притяжения, массы всегда положительны, а кулоновские силы могут быть и силами притяжения и силами отталкивания, так как существуют заряды двух видов: положительные и отрицательные — причём заряды одинакового знака отталкиваются.

Вычисления при помощи закона Кулона требуют определения единицы заряда. Но создать эталон заряда невозможно, так как утечка заряда с тела неизбежна. Наиболее разумно было бы принять за единицу измерения заряд электрона, что и сделано в атомной физике, но во времена появления электростатики об элементарных частицах ещё не знали.

Можно установить единицу измерения заряда через закон Кулона, это рационально сделать так, чтобы коэффициент k был равен единице. Именно так определяется единица заряда в абсолютной (гауссовой) системе единиц. Точечный заряд, действующий в вакууме на равный ему заряд, находящийся на расстоянии 10 -2 м с силой 10 -5 Н равен 1 СГСЭq.

В Международной системе единиц (СИ) единица заряда также является производной. 1 Кулон (Кл) равен заряду, проходящему за 1 секунду через поперечное сечение проводника при силе тока в нём в 1 ампер. Связь между единицами заряда:
1Кл=3*10 9 СГСЭq.
e=1,6*10 -19 Кл = 4,8*10 -10 СГСЭq.
В системе СИ коэффициент k в законе Кулона не равен единице и имеет размерность:
k=9*10 9 Н*м 2 /Кл 2 .
Многие уравнения электродинамики упрощаются при записи коэффициента k в виде
k=1/4&#960&#9490 ,где &#9490=8,85*10 -12 Кл 2 /(Н*м 2 ) — электрическая постоянная.

schools.keldysh.ru

Взаимодействие заряженных тел. Закон Кулона. ЗСЭ заряда. Электрическое поле

Электрический заряд — физическая величина, определяющая интенсивность электромагнитных взаимодействий.

Носителями отрицательных зарядов в атоме являются электроны, носителями положительных зарядов — протоны.

Все тела в обычном состоянии не заряжены. Чтобы тело получило заряд, его нужно наэлектризовать: отделить отрицательный заряд от связанного с ним положительного. Простейший способ электризации – трение.

При электризации тел трением происходит перераспределение имеющихся электронов между нейтральными, в первый момент телами, т.е в теле возникает избыток или недостаток электронов. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда. Он справедлив для изолированной системы. В изолированной системе алгебраическая сумма зарядов всех частиц сохраняется:

В природе существует только два вида электрических зарядов: положительные и отрицательные. Одноимённые заряды отталкиваются, разноимённые – притягиваются:

Взаимодействие между заряженными частицами называется электромагнитным.

Неподвижные точечные электрические заряды q1 и q2 взаимодействуют в вакууме согласно закону Кулона с силой где коэффициент , q — заряд выражается в кулонах (Кл), r — расстояние между заряженными телами (м).

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними. Это основной закон электростатики Шарлем Кулоном был экспериментально установлен в 1785 г. и носит его имя.

Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы:

Взаимодействие зарядов осуществляется посредством электрического поля. Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

  • порождается электрическим зарядом;
  • обнаруживается по действию на ток;
  • действует на заряды с некоторой силой.

Напряженность поля определяет силу, действующую на заряд:

Напряженность — силовая характеристика электрического поля. .

Напряженность — векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда. , Напряженность не зависит от величины заряда, помещенного в поле. , если q>0. , если q Опубликовано 21/06/2015 21/06/2015 Автор admin Рубрики экзаменационные билеты по физике Метки Билет №13, взаимодействие заряженных тел, Все тела в обычном состоянии не имеют заряда. Чтобы тело получило заряд, закон Кулона, закон сохранения электрического заряда, электрическое поле

kaplio.ru

Взаимодействие электрических зарядов

Два одноименных заряда, будь то два протона либо два электрона сопротивляются сближению и пытаются удалиться друг от друга. Этот процесс обычно называют отталкиванием. Первый закон описывающий взаимодействие электрических зарядов говорит: заряды с одинаковым знаком (т. е. одноименные) отталкиваются друг от друга (рис.2.1.). Второй закон взаимодействия электрических зарядов гласит: разноименные (заряды с разным знаком) притягиваются друг к другу.

Отрицательно заряженные электроны притягиваются к положительно заряженным протонам в ядре атома. Почему же электрон остается на орбите и не падает на ядро? Это происходит в результате того, что сила притяжения электрона уравновешивается центростремительной силой, возникающей за счет вращения электрона вокруг ядра.
Значение величины сил отталкивания и притяжения, существующих между двумя заряженными телами, зависит от следующих факторов: расстояния между телами и их зарядов.
Заряд отдельного электрона очень мал, поэтому в практике не используется. Принятой в мире единицей измерения заряда является кулон (Кл). Она названа в честь французского ученого Шарля Кулона, обозначается буквой Q. Один кулон это 6,28*10 18 зарядов электронов.
Электрические заряды возникают за счет смещения электронов. Когда имеется дефицит электронов в одной точке и избыток в другой, как мы уже говорили, возникает разность потенциалов. Если две точки, между которыми существует разность потенциалов, соединить проводником, то по проводнику потекут электроны. Тогда этот поток электронов называется электрическим током.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

www.sxemotehnika.ru

1.2. Закон Кулона. Принцип суперпозиции

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) — французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и — радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического — «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы — соответствующее знаку произведения зарядов: — отталкивание и — притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом — противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора — расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

.

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает.

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Эксперимент

Год

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d. Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

В СИ единицей измерения электрического заряда является кулон (Кл) — электрический заряд, протекающий за 1 секунду через поперечное сечение проводника при постоянной силе тока в 1 A:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной. Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон — слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел — первого и второго — действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV — физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS — физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где — физически бесконечно малый элемент длины линии.

Здесь всюду — заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение ) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r, r + a/2, r + a? Поскольку по условиям задачи мы не имеем права считать, что a , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q, расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

online.mephi.ru

Электрический заряд и его свойства. Закон сохранения электрического заряда. Электрический заряд и его свойства.

Электрический заряд q – это физическая величина, которая характеризует свойство тел или частиц вступать в электромагнитные взаимодействия и определяет значения сил и энергий при таких взаимодействиях. Ему присущи следующие фундаментальные свойства:

1) электрический заряд существует в двух видах: отрицательные и положительные заряды;

2) Электрический заряд дискретен;

3) алгебраическая сумма электрических зарядов замкнутой системы остается постоянной (закон сохранения электрического заряда);

или ,

4) электрический заряд — величина релятивистки инвариантная, т.е. не зависит от системы отсчета, а значит, не зависит от того, движется заряд или покоится.

Закон сохранения электрического заряда.

Закон сохранения электрического заряда утверждает: электрические заряды не возникают и не исчезают, они могут быть лишь переданы от одного тела другому или перемещены внутри данного тела. Это фундаментальный закон природы, экспериментально подтвержденный в 1843 году английским физиком М. Фарадеем:

или ,

т.е. алгебраическая сумма зарядов замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается постоянной.

Взаимодействие зарядов. Закон Кулона.

Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как материальной точки является физической абстракцией.

Закон Кулона

Закон Кулона утверждает: сила взаимодействия между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядамии обратно пропорциональна квадрату расстоянияr между ними. Этот закон можно записать в виде:

, (1)

где k – коэффициент пропорциональности, зависящий от выбора системы единиц. В СИ , где величина– электрическая постоянная. Она относится к числу фундаментальных физических постоянных: Ф/м или . (Фарад (Ф)– единица электроемкости.) Тогда численное значение коэффициента .

Кулон экспериментально установил, что силы, действующие на заряды, являются центральными, т.е. они направлены вдоль прямой, соединяющей заряды (рис. 1.1).

Для одноименных зарядов (иилии) произведение, поэтому в формуле (1) силаF > 0 соответствует случаю взаимного отталкивания одноименных зарядов, а сила F Стр 1 из 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >>

studfiles.net