Уточненный закон всемирного тяготения Ньютона

Бездельник натуральный!
Сидеть, ничего не делать,
целыми днями заниматься физикой!

Мысли жены вслух

На фоне впечатляющих успехов современной физики, гравитация остается самым загадочным природным явлением. Величие гравитации заключается в том, что ей подчиняется все существующее на свете, начиная от самой вселенной и кончая ее составляющими элементами. Впервые наиболее полно это было осознанно великим английским ученым Исааком Ньютоном (1643. 1727). В 1687 г. Ньютон опубликовал свой знаменитый труд «Математические начала натуральной философии», раскрывший человечеству впервые теории движения планет и основы гравитации. Закон всемирного тяготения Ньютона, который стал первым научным законом, действующий во всей Вселенной гласит: каждые две частицы материи притягивают взаимно друг друга, или тяготеют друг другу, с силой, прямо пропорциональной произведению их масс и обратно пропорционально квадрату расстояния между ними:

,

где M и m – массы частиц;
R – расстояние между ними;
γ – гравитационная постоянная.

Современники Ньютона [1, с. 39. 51] не сразу осознали величие гравитации. Христиан Гюйгенс, которого сам Ньютон называл великим ученым писал: «Мысль Ньютона о взаимном притяжении, я считаю нелепой и удивляюсь, как человек подобно Ньютона, мог сделать столь трудных исследований вычислений, не имеющих в основании ничего лучшего, чем эта мысль».

Мысль о том, что небесные тела обладают свойством притягивать, высказывали ранее до Ньютона Николай Кузанский, Леонардо да Винчи, Коперник и Кеплер. «Тяжесть есть взаимная склонность между родственными телами, стремящими слиться, соединиться воедино. В какое место мы ни поместили бы Землю, тяжелые тела вследствие природной им способности будут всегда двигаться к ней. Если бы в каком-нибудь месте мира находились два камня на близком расстоянии друг от друга и вне сферы действия какого бы ни было родственного им тела, то эти камни стремились бы соединиться друг с другом подобно двум магнитам. » – писал в своей книге «Новая астрономия» Кеплер. Гениальные высказывания Кеплера были лишь только началом большого пути, которое стоило еще преодолеть. Из множества исследователей этот трудный путь суждено было пройти Ньютону.

Триумфальному шествию закона всемирного тяготения предшествовал нелегкий период его становления. К идее всемирного тяготения несколько раньше Ньютона пришел Роберт Гук (1635. 1703). Между Гуком и Ньютоном шел долгий спор о приоритете в открытии закона всемирного тяготения. В отличие от высказываний Гука, Ньютон разработал математическую теорию тяготения и доказал численными методами действие закона тяготения. Взгляды на гравитацию своих предшественников Ньютон отобразил одной формулой (1), которая является математической моделью гравитационного взаимодействия двух материальных тел.

После смерти Исаака Ньютона (1727 г.) закон всемирного тяготения подвергся новым испытаниям. Последним серьезным возражением против закона всемирного тяготения считают публикацию французского математика и астронома Алексиса-Клода Клеро в 1745 г. Некоторые детали вычисленной им орбиты Луны, по его мнению, требуют исправления закона всемирного тяготения [2, с. 77. 78].

Одной из важнейших проблем А. Клеро считал теорию движения Луны на основе закона всемирного тяготения Ньютона, точнее – исследование того неравенства, «которое получило у Ньютона наиболее темное развитие, именно, движение лунного перигея». Оригинальный самостоятельный путь исследований А. Клеро приводит к тому же значению, которое получил в свое время сам Ньютон, расходившееся с наблюдаемыми данными почти в два раза. К таким же выводам пришел независимо другой исследователь Жан Лерон Даламбер (1717. 1783). Он, как и А. Клеро пришел к выводу, что под действием ньютонова притяжения перигей орбиты Луны должен был завершать одно обращение за 18 лет, а не за 9 лет, как происходит в действительности.

Независимо друг от друга А. Клеро и Ж. Даламбер, занимающиеся исследованием в области ньютоновской механики и теории тяготения, пришли к одинаковому выводу о том, что теория Ньютона не способна объяснить движение перигея Луны и требует внесения поправок. Такой путь подсказал еще сам Ньютон.

Небольшая поправка А. Клеро [2, с. 79] формы всемирного закона тяготения Ньютона была представлена в следующем виде:

,

где M и m – массы двух тел;
R – расстояние между ними;
γ – гравитационная постоянная;
nn > 2 (например, n = 3, n = 4);
α – малая величина, подбираемая опытным путем.

Высказывание Ж. Даламбера также свидетельствует о необходимости дополнительного члена: «Луна притягивается к Земле еще другой, небольшой по величине силой, действующей не по закону обратной пропорциональности квадратам расстояний».

Против вывода А. Клеро и Ж. Даламбера выступил известный французский естествоиспытатель Жорж Бюффон (1707. 1783). Он своим авторитетом спас формулу Ньютона от коррекции, заявив, что нам предлагают нечто произвольное, вместо того, чтобы воспроизводить истину». По его мнению после первого изменения впоследствии могли бы беспрепятственно возникнуть и последующие члены. «Всякий физический закон лишь потому является законом, что его выражение обладает единственностью и простотой» – заявил Ж. Бюффон.

До настоящего времени считают, что Клеро перепроверил свои результаты и обнаружил ошибку. С этой точкой зрения мы не можем согласиться. В рамках своей чисто аналитической модели он действительно исправил противоречия в своей модели, и нетронутой оставил несовершенство в законе всемирного тяготения Ньютона. На наш взгляд А. Клеро не стал противопоставлять себя авторитету самого Ньютона, его последователям и вышел на самостоятельный путь исследования. Он не стал уточнять формулу закона всемирного тяготения и тем самым избежал ожидавших его в будущем возможных острых дискуссий. Как покажет история, данная стратегия оправдала себя. А. Клеро выиграет конкурс объявленный в 1750 г. Петербургской академией, получит восторженные отзывы современников, издаст книгу «Теория движения Луны, выведенная из единственного принципа притяжения, обратно пропорционально квадратам расстояний» в 1752 г. и будет избран член-корреспондентом Петербургской академии наук в 1754 г.

Все силы А. Клеро были сосредоточены на выполнение собственной программы исследований: «После долгих размышлений над теорией Ньютона и не достигнув той степени убежденности, которой я ожидал, я решил больше ничего у него не заимствовать и самостоятельно искать определения движения небесных тел, при единственном допущении об их взаимном притяжении». Данный подход позволил ему построить чисто аналитическую модель гравитационного взаимодействия.

С тех пор прошло 350 лет. Закон всемирного тяготения (1) в первозданном виде благополучно встретил 2000-летие. Сомнения А. Клеро и Ж. Даламбера относительно закона всемирного тяготения Ньютона, на наш взгляд, так и не рассеялись. Последовательность следующих рассуждений приводит нас к неожиданным результатам.

Два материальных тела М и m притягивают друг друга с одинаковой силой F. Гравитационное поле массы М вызывает ускорение m:
g = γ · (M / R 2 ).

Соответственно масса m вызывает ускорение М:
g = γ · (m / R 2 ).

Относительное ускорение двух тел М и m gот равное разности gMgm, а так как gM и gm направлены в противоположные стороны, то gот равно сумме ускорений gM и gm [3, с. 117. 118]:

Следовательно, ускорение при относительном движении двух притягивающихся материальных тел M и m мы можем считать, что сила исходит из неподвижного центра и можно исследовать движение только одного тела.

Поясним это на следующем примере и на практике проверим адекватность формулы (3) окружающей действительности. На поверхности Земли, то есть на расстоянии 6371,032 км от ее центра, ускорение gЗем = 9,81 м/с 2 . Ускорение, вызываемое притяжением Земли на расстоянии r = 384400 км до Луны должно уменьшится в 384400 2 / 6371,032 2 = 3640,38 раз. Ускорение Луны, вызываемое притяжением Земли равно:

gЗемля-Луна = 9,81 м/с 2 / 3640,38 = 0,2695 см/с 2 .

Соответственно на поверхности Луны, на расстоянии r = 1738 км от ее центра, ускорение gЛуна = 1,62 м/с 2 . Это ускорение, вызываемое притяжением Луны на расстоянии r = 384400 км до Земли должно уменьшится в 384400 2 / 1738 2 = 48917,83 раз.

Ускорение Земли, вызываемое притяжением Луны равно:

gЛуна-Земля = 1,62 м/с 2 / 48917,83 = 0,0033 см/с 2 .

Относительное ускорение Луны gот будет равно сумме ускорений

gот = gЗемля-Луна + gЛуна-Земля = 0,2695 см/с 2 + 0,0033 см/с 2 = 0,2728 см/с 2 .

Полученное значение относительного ускорения Луны gот можно проверить следующим способом. Предполагая, что Луна движется по окружности вычислим ее действительное ускорение по формуле:

где V – скорость движения Луны по орбите;
r – расстояние от Земли до Луны.

Скорость движения Луны по орбите V можно вычислить по формуле:

где T – звездный период обращения Луны, Т = 27,3 суток;
r – расстояние от Земли до Луны (r = 384400 км).

V = (2 · 3,14 · 384400 км) / 2358720 сек = 1,02345 км/сек

Gот = (1,02345 км/сек) 2 / 384400 км = 0,2725 см/сек 2 .

Расчеты показывают, что Gот = gот и относительная погрешность этих двух показателей составляет Gотgот = 0,2728 см/сек 2 – 0,2725 см/сек 2 = 0,0003 см/сек 2 или 0,12%.

Численные расчеты gот на реальных данных Земли и Луны подтверждают адекватность формулы (3) окружающему миру.

Рассмотрим теперь движение тела m относительно M. Величина силы F действующая между m и M равна произведению массы m на относительное ускорение gот:

Формулу (4) можно представить в виде суммы двух членов:

Первый член совпадает с формулой (1) – закона всемирного тяготения, а в целом формула (5) напоминает формулу (2), которую в свое время предложил А. Клеро с целью корректировки всемирного закона Ньютона.

Если m значительно меньше чем M, т.е. m 2 и на этом ее роль закончилась. Второе слагаемое раскрывает сущность гравитационного потенциала второго тела m и оно равно (γ · m) / R 2 . Теперь осталось вычислить силу во втором слагаемом и для этого по традиционной схеме необходимо (γ · m) / R 2 умножить на М, т.е. мы получим (γ · m · М) / R 2 опять всемирный закон тяготения Ньютона! Но это противоречит формуле (4), который был получен нами аналитически из расчетов ускорений между Землей и Луной. На самом деле реальная сила будет равна (γ · m · m) / R 2 . Здесь мы подходим к факту, гравитационный потенциал порождаемый телом m вызывает ускоренное движение самого тела m в сторону М. И это не противоречит третьему закону Ньютона. Тело m движется равноускоренно в сторону М и соответственной М движется равноускоренно в сторону m. Но так как m значительно меньше М сила выраженная в форме (γ · m · m) / R 2 объективно отражает силу, которая порождается массой m. Массу М можно охарактеризовать как центральное тело, вокруг которого движется тело m. То тело, которое движется относительно центрального тела будет являться критерием выбора его во второе слагаемое.

Теперь сформулируем новый уточненный закон всемирного тяготения:
каждые две частицы материи притягивают взаимно друг друга, или тяготеют друг другу, с силой, прямо пропорциональной произведению суммы двух масс на массу тела, движущуюся относительно центральной массы и обратно пропорционально квадрату расстояния между ними (4).

С точки зрения теории и методологии изучения закона гравитации переход от формулы (1) к (4) наиболее полно раскрывает сущность закона всемирного тяготения. Из формулы (1) мы видим только гравитационное действие одного тела M либо m, в то же время формула (4) отражает взаимное гравитационное действие двух тел M и m одновременно.

Небольшая поправка к закону всемирного тяготения Ньютона ведет к интересным последствиям. Что следует из формулы (4)? Для этого нам следует поспешить на знаменитую Пизанскую башню, пока она не упала и повторить опыт Галилея. Результат будет следующий – вопреки общепринятому мнению, более тяжелое тело достигнет Земли быстрее! Опыт осуществить несложно, только хлопоты будут создавать толпы туристов, которых не было в XVI веке.

Наша поправка еще более ярко проявляется при m = M. Значение силы F вычисленное по формуле (4) F = γ · 2М 2 / r 2 больше в два раза чем значение силы рассчитанной по формуле (1) F = γ · М 2 / r 2 .

Прав был Аристотель, утверждая, что падение массы золота или свинца, или какого-нибудь другого тела происходит тем быстрее, чем больше его размер! К этому выводу пришел и Леонардо да Винчи. Великий художник и ученный бросал тела разного веса и пришел к такому же результату: скорость падения тела зависит от веса тела.

Из формулы (4) следует неаддитивность силы тяжести. Рассмотрим это на примере силы тяжести двух тел m1 и m2 относительно земли. Тело m1 действует на землю силой F1 и второе тело m2 действует соответственно с силой F2. Складывая массы двух тел m1 и m2 получим третье тело m3, где m3 = m1 + m2. Оно также действует на землю силой равной F3. Для нашего примера нарушение аддитивности силы тяжести означает:

n-t.ru

Альтернативная
наука

Михайлов В.Н. / Закон всемирного тяготения

Название: Закон всемирного тяготения

Автор: Михайлов В.Н.

Аннотация: В рамках классической механики в ее развитии с применением некоторых представлений релятивистской механики доказывается существование переменной составляющей поля тяготения при движении планет и звезд по эллиптическим орбитам. Вводятся понятия приливного потенциала и «жесткости» гравитационного поля взаимодействующих тел. На основе этих понятий объясняется природа излучения половины переменной составляющей поля тяготения, значительная часть которой может трансформироваться в тепловую энергию через приливные трения. Таким образом, теорема о вириале справедлива и для переменной составляющей поля тяготения, порождаемого гравитационным взаимодействием тел и определяемого через взаимную потенциальную энергию.
Введенный ряд новых понятий позволяет дать новую интерпретацию обобщенного третьего закона Кеплера и новое объяснение смещения перигелия планеты в системе планета — звезда.

Скачать в pdf (5,62 МБ ): Михайлов В.Н. / Закон всемирного тяготения

В современной науке Теслу цитируют всё чаще. Тесла открыл и использовал закон, касающийся фундаментальных свойств эфира, и закон, структурирующий изначально бесконечный и гомогенный (однородный) эфир. Предположение о непрерывности

Картина мира современной физики. Классическая физика и теория относительности Первой фундаментальной физической теорией, которая имеет высокий статус и в современной физике, является классическая механика, основы

М. Бунге / Место принципа причинности в современной науке Название: Место принципа причинности в современной науке Автор: М. Бунге Аннотация:Вниманию читателей предлагается книга известного специалиста в

Двигатель Шаубергера Название: Двигатель Шаубергера Аннотация: Одной из «изюминок» диска Белонце являлся оригинальный вихревой двигатель В.Шаубергера (V. Schauberger). В течении всей жизни

Анатолий РЫКОВ / Структура вакуума и единство взаимодействий Название: Структура вакуума и единство взаимодействий Автор: Анатолий РЫКОВ Аннотация: Есть различия между физическими законами и научными исследовательскими технологиями. Например, закон тяготения

Перышкин А.В. / Физика. 9 класс. Название: Физика. 9 класс. Автор: Перышкин А.В. Аннотация: Учебник 9 класса завершает курс физики основной школы. В него включены

И. Л. Лейтес / Второй Закон и его 12 заповедей. Популярная термодинамика Название: Второй Закон и его 12 заповедей. Популярная термодинамика Автор: И. Л. Лейтес Аннотация: Книга И. Л. Лейтеса посвящена практическим вопросам

www.vixri.ru

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

ЗАКОН ВСЕМИРНОГО ТЯГОТЕНИЯ

Мысль, что тела падают на землю вследствие притяжения их земным шаром, была далеко не нова: это знали еще древние, например Платон. Но как измерить силу этого притяжения? Везде ли на земном шаре оно одинаково и как далеко оно простирается? Вот вопросы, которые до Ньютона — автора закона всемирного тяготения, смущали ученых и философов.

Открыв свой третий закон, Кеплер пришел в такое восторженное состояние, что ему показалось, будто он бредит. В 1619 году Кеплер издал знаменитую «Гармонию мироздания», в которой был на расстоянии одного taara от открытия Ньютона и все-таки не сделал его. Мало того, что Кеплер приписывал движения планет некоторому взаимному притяжению, он даже готов был принять закон «квадратной пропорции» (то есть действия, обратно пропорционального квадратам расстояний). Увы, вскоре он отказался от него и вместо этого предположил, что притяжение обратно пропорционально не квадратам расстояний, а самим расстояниям. Кеплеру не удалось установить механических начал им же открытых законов планетного движения.

Непосредственными предшественниками Ньютона в этой области были его соотечественники Джильберт и в особенности Гук. В 1660 году Джильберт издал книгу «О магните», в которой сравнивал действие Земли на Луну с действием магнита на железо. В другом сочинении Джильберта, напечатанном уже после его смерти, сказано, что Земля и Луна влияют друг на друга как два магнита, и притом пропорционально своим массам. Но ближе всего к истине подошел Роберт Гук, современник и соперник Ньютона. 21 марта 1666 года, то есть незадолго до того времени, когда Ньютон впервые глубоко вник в тайны небесной механики, Гук прочел на заседании Лондонского королевского общества отчет о своих опытах над изменением силы тяжести в зависимости от расстояния падающего тела относительно центра Земли. Сознавая неудовлетворительность своих первых опытов, Гук придумал измерять силу тяжести посредством качания маятника — мысль в высшей степени остроумная и плодотворная. Два месяца спустя Гук сообщил в том же обществе, что сила, удерживающая планеты в их орбитах, должна быть подобна той, которая производит круговое движение маятника. Значительно позднее, когда Ньютон уже готовил к печати свой великий труд, Гук независимо от Ньютона пришел к мысли, что «сила, управляющая движением планет», должна изменяться в «некоторой зависимости от расстояний», и заявил, что «построит целую систему мироздания», основанную на этом начале. Но здесь-то и обнаружилось различие между талантом и гением. Счастливые мысли Гука так и остались в зачаточном состоянии. Ему не хватило сил справиться со своими гипотезами, и приоритет открытия принадлежит Ньютону.

Исаак Ньютон (1642–1726) родился в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения сына. Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил. Думали, что младенец не выживет. Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

По имущественному положению семья Ньютонов принадлежала к числу фермеров средней руки. Когда Исаак подрос, его устроили в начальную школу. По достижении двенадцатилетнего возраста мальчик начал посещать общественную школу в Грантэме. Его поместили на квартиру к аптекарю Кларку, где он прожил с перерывами около шести лет. Жизнь у аптекаря впервые возбудила в нем охоту к занятиям химией.

5 июня 1660 года, когда Ньютону еще не исполнилось восемнадцати лет, он был принят в Тринити-колледж. Кембриджский университет был в то время одним из лучших в Европе: здесь одинаково процветали науки филологические и математические. Ньютон обратил главное внимание на математику. Но одновременно в 1665 году он получил степень бакалавра изящных искусств (словесных наук).

Его первые научные опыты связаны с исследованиями света. Ученый доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Изучая преломление света в тонких пленках, Ньютон наблюдал дифракционную картину, получившую название «колец Ньютона».

В 1666 году в Кембридже проявилась какая-то эпидемия, которую по тогдашнему обычаю сочли чумой, и Ньютон удалился в свой Вульсторп. Здесь в деревенской тиши, не имея под рукой ни книг, ни приборов, живя почти отшельнической жизнью, двадцатичетырехлетний Ньютон предался глубоким философским размышлениям. Плодом их было гениальнейшее из его открытий — учение о всемирном тяготении.

Был летний день. Ньютон любил размышлять, сидя в саду, на открытом воздухе. Предание сообщает, что размышления Ньютона были прерваны падением налившегося яблока. Знаменитая яблоня долго хранилась в назидание потомству. А после того как засохла, была срублена и превращена в исторический памятник в виде скамьи.

Ньютон давно размышлял о законах падения тел, и весьма возможно, что, в частности, падение яблока опять навело его на эти мысли, от которых он перешел к вопросу: везде ли на земном шаре падение тел происходит одинаково? Так, например, можно ли утверждать, что в высоких горах тела падают с такою же скоростью, как и в глубоких шахтах?

Но каким образом открыл Ньютон этот закон, для которого аналогия с падением яблока уже не могла иметь никакого значения? Сам Ньютон писал много лет спустя, что математическую формулу, выражающую закон всемирного тяготения, он вывел из изучения знаменитых законов Кеплера. Возможно, однако, что его работу в этом направлении значительно ускорили исследования, производившиеся им в области оптики Закон, которым определяется «сила света» или «степень освещения» данной поверхности, весьма схож с математической формулой тяготения. Простые геометрические соображения и прямой опыт показывают, что при удалении, например, листа бумаги от свечи на двойное расстояние степень освещения поверхности бумаги уменьшается, и притом не вдвое, а в четыре раза, при тройном расстоянии — в девять раз и так далее. Это и есть закон, который во времена Ньютона называли кратко законом «квадратной пропорции». Если, говорить точнее, «сила света обратно пропорциональна квадратам расстояний». Весьма естественно для такого ума, как Ньютон, было попытаться приложить этот закон к теории тяготения.

Раз придя к мысли, что притяжение Луны Землей определяет движение земного спутника, Ньютон неминуемо пришел к подобной же гипотезе относительно движения планет вокруг Солнца. Но ум его не довольствовался непроверенными гипотезами. Он стал вычислять, и понадобились десятки лет для того, чтобы его предположения превратились в грандиознейшую систему мироздания.

При этом Ньютон никогда не мог бы развить и доказать своей гениальной идеи, если бы не владел могущественным математическим методом, известным сегодня под именем дифференциального и интегрального исчислений.

Справедливость требует отметить и вклад Роберта Гука. Так, проницательный Гук исправил вывод Ньютона и написал последнему, что падающие тела должны уклоняться не совсем точно на восток, но на юго-восток. Тот согласился с доводами Гука, и опыты, произведенные последним, вполне подтвердили теорию.

Гук исправил и другую ошибку Ньютона. Исаак полагал, что падающее тело, вследствие соединения его движения с движением Земли, опишет винтообразную линию. Гук показал, что винтообразная линия получается лишь в том случае, если принять во внимание сопротивление воздуха и что в пустоте движение должно быть эллиптическим — речь идет об истинном движении, то есть таком, которое мы могли бы наблюдать, если бы сами не участвовали в движении земного шара.

Проверив выводы Гука, Ньютон убедился, что тело, брошенное с достаточной скоростью, находясь в то же время под влиянием силы земного тяготения, действительно может описать эллиптический путь. Размышляя над этим предметом, Ньютон открыл знаменитую теорему, по которой тело, находящееся под влиянием притягивающей силы, подобной силе земного тяготения, всегда описывает какое-либо коническое сечение, то есть одну из кривых, получаемых при пересечении конуса плоскостью (эллипс, гипербола, парабола и в частных случаях круг и прямая линия). Кроме того, Ньютон определил, что центр притяжения, то есть точка, в которой сосредоточено действие всех притягивающих сил, действующих на движущуюся точку, находится в фокусе описываемой кривой. Так, центр Солнца находится (приблизительно) в общем фокусе эллипсов, описываемых планетами.

Достигнув таких результатов. Ньютон сразу увидел, что он вывел теоретически, то есть исходя из начал рациональной механики, один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Но Ньютон не удовольствовался этим основным совпадением теории с наблюдением. Он хотел убедиться, возможно ли при помощи теории действительно вычислить элементы планетных орбит, то есть предсказать все подробности планетных движений? На первых порах ему не повезло.

Джон Кондуитт пишет об этом так: «В 1666 году он вновь оставил Кембридж… чтобы поехать к своей матери в Линкольншир, и в то время как он размышлял в саду, ему в голову пришло, что сила тяжести (которая заставляет яблоко падать на землю) не ограничена определенным расстоянием от Земли, а что сила должна распространяться гораздо дальше, чем обычно думают. Почему бы не до Луны? — сказал он себе, и если так, это должно влиять на ее движение и, возможно, удерживать ее на орбите, вследствие чего он решил вычислить, каков мог бы быть эффект такого предположения; но поскольку у него не было тогда книг, он использовал общеупотребительное суждение, распространенное среди географов и наших моряков до того, как Норвуд измерил Землю, и заключающееся в том, что в одном градусе широты на поверхности Земли содержится 60 английских миль. Расчет не совпал с его теорией и заставил его довольствоваться предположением, что наряду с силой тяжести должна быть еще примесь той силы, которой была бы подвержена Луна, если бы она переносилась в своем движении вихрем…»

Изучение законов эллиптического движения значительно подвинуло вперед исследования Ньютона. Но до тех пор, пока вычисления не согласовались с наблюдением, Ньютон должен был подозревать существование некоторого все еще от него ускользавшего источника ошибки или неполноты теории.

Лишь в 1682 году Ньютон смог использовать более точные данные при измерении меридиана, полученные французским ученым Пикаром. Зная длину меридиана, Ньютон вычислил диаметр земного шара и немедленно ввел новые данные в свои прежние вычисления. К величайшей радости своей ученый убедился, что его давнишние взгляды совершенно подтвердились. Сила, заставляющая тела падать на Землю, оказалась совершенно равной той, которая управляет движением Луны.

Этот вывод был для Ньютона высочайшим торжеством его научного гения. Теперь вполне оправдались его слова: «Гений есть терпение мысли, сосредоточенной в известном направлении». Все его глубокие гипотезы, многолетние вычисления оказались верными. Теперь он вполне и окончательно убедился в возможности создать целую систему мироздания, основанную на одном простом и великом начале. Все сложнейшие движения Луны, планет и даже скитающихся по небу комет стали для него вполне ясными. Явилась возможность научного предсказания движений всех тел Солнечной системы, а быть может, и самого Солнца, и даже звезд и звездных систем.

В конце 1683 года Ньютон, наконец, сообщил Королевскому обществу основные начала своей системы в виде ряда теорем о движении планет.

Однако теория была слишком гениальна, чтобы не нашлись завистники и люди, старавшиеся приписать себе хотя бы часть славы этого открытия. Без сомнения, некоторые из тогдашних английских ученых довольно близко подошли к открытиям Ньютона, но понять трудность вопроса еще не значит решить его. Знаменитый архитектор и математик Кристофер Рен пытался объяснить движение планет «падением тел на Солнце, соединенным с первоначальным движением». Астроном Галлей предполагал, что законы Кеплера объяснимы при помощи действия силы, обратно пропорциональной квадратам расстояний, но не умел доказать этого.

Гук уверял членов Королевского общества, что все идеи, содержавшиеся в «Началах», уже сто раз предлагались им; те же, что не излагались им ранее, — ошибочны. Гюйгенс полностью и категорически отверг идею взаимного тяготения частиц, допуская наличие тяготения лишь внутри тел. Лейбниц продолжал настаивать на том, что движение планет может быть объяснено только посредством некоторой эфирной вихрящейся жидкости, сбивающей планеты с прямолинейного пути Бернулли и Кассини тоже упорно твердили о вихрях.

Однако потихоньку шум утих, а слава открытия всемирного тяготения досталась по праву Исааку Ньютону.

info.wikireading.ru