способ гашения вынужденной вибрации гидродинамического стабилизатора судна
Изобретение относится к области судостроения, а именно к способам снижения вибрации гидродинамических стабилизаторов судов. Предложенный способ снижения вибрации гидродинамического стабилизатора судна характеризуется тем, что внутренние полости крыла стабилизатора, разделенные проницаемыми переборками, заполняют жидкостью с элементами, увеличивающими массу жидкости. Элементы, увеличивающие массу жидкости, выполняют в виде шаров, изготовленных из тяжелого материала, например свинца, и помещают их внутрь шарообразных пластиковых контейнеров, частично компенсирующих силу тяжести. Технический результат заключается в повышении эффективности гашения виброперемещений крыла гидродинамического крыльевого стабилизатора судна на различных режимах его движения. 1 з.п. ф-лы, 3 ил.
Рисунки к патенту РФ 2523725
Предлагаемый способ относится к судостроению, а именно к способам снижения вибрации гидродинамических стабилизаторов.
Известен активный стабилизатор килевой и бортовой качки корабля (штормовой аварийный движитель) по патенту РФ № 2384457, МПК B63B 39/00, заявл. 25.04.2008, опубл. 20.03.2010.
Данный стабилизатор имеет два управляемых крыла или две поворотные насадки на гребных винтах, установленных на горизонтальных или наклонных баллерах в кормовой части корпуса корабля под прямым воздействием потока жидкости от работающих гребных винтов.
Способ стабилизации осуществляют следующим образом.
В штатном режиме работы по командам от измерительно-аналитической системы для компенсации кренящих моментов горизонтальные (наклонные) крылья перекладывают враздрай, или для компенсации дифферента при килевой качке для всплытия/погружения горизонтальные крылья перекладывают совместно.
Таким образом, при резких воздействиях штормовых волн на винторулевой комплекс упругие (подпружиненные) перекладки крыльев будут способствовать меньшим потерям хода судна.
Недостатком известного решения является то, что у крыльев отсутствуют средства активного снижения уровня их вибрации.
Наиболее близким аналогом к предлагаемому способу является способ активного успокоителя качки, в котором реализуют периодическую перекачку (перевалку) значительных объемов воды из одной емкости (бортовой цистерны) в другую, симметрично расположенную, с таким расчетом, чтобы создать необходимый компенсирующий момент, возвращающий судно в положение равновесия. Данное техническое решение может быть принято за прототип (Холодилин А.Н., Шмырев А.Н. Мореходность и стабилизация судов на волнении. — Л.: Судостроение, 1976. — С.157. Сайт ЗАО «Центральный научно-исследовательский институт судового машиностроения» http://www.sudmash.ru/produce/sudmash/ship-stabilizers.html).
Недостатком данного решения как и предыдущего также является отсутствие средств активного воздействия на вибрацию.
Основной целью предлагаемого способа является обеспечение эффективного гашения виброперемещений крыла гидродинамического крыльевого стабилизатора судна на различных режимах его движения.
Поставленная цель достигается тем, что герметичную внутреннюю полость крыла стабилизатора, разделенную проницаемыми переборками для обеспечения прочности, заполняют жидкостью с элементами, увеличивающими массу жидкости.
При этом, указанные элементы выполнены в виде шаров, изготовленных из тяжелого материала, например свинца, и помещенных внутрь шарообразных пластиковых контейнеров, частично компенсирующих силу тяжести элемента в жидкости (но не его массу).
Предлагаемый способ предусматривает два варианта заполнения отсека жидкостью. Первый — принудительный, при котором жидкость (возможно с элементами при малом их размере) закачивается в отсек с одновременной откачкой воздуха по трубопроводам (гибким шлангам) при помощи насосов. Второй вариант предусматривает заполнение отсека забортной водой через клапаны в обшивке крыла, которые обеспечивают поступление воды, и выход воздуха из внутренней полости крыла. Трубопровод может использоваться для продувки крыла сжатым воздухом и принудительного вытеснения из него жидкости. Элементы, увеличивающие массу жидкости, могут быть размещены внутри крыла предварительно (на этапе его изготовления или монтажа на судне).
Используемая для изменения массы крыла жидкость способна вследствие своих инерционных и специфичных упругих свойств оказывать существенное влияние на весь частотный спектр, а также на уровни колебаний конструкции в целом. Указанное влияние существенно отличается от влияния конструкционной массы (материала) крыла. В процессе колебаний влияние дополнительной конструкционной массы эквивалентно уменьшению жесткости конструкции. Масса содействует перемещениям. Ее влияние на жесткость проявляется синфазно внешней нагрузке.
Жидкость, находящаяся внутри конструкции крыла проявляет себя иным образом. Как сплошная среда, жидкость слабо сопротивляется сдвиговым деформациям, что лишает ее значимого влияния на жесткость конструкции. Поэтому движение большой массы жидкости, наоборот, всегда проявляется в противофазе по отношению к внешнему воздействию и движению крыла. Выявлена особенность жидкости перемещаться в резонансе с любой частотой внешнего силового воздействия и, смещаясь в противофазе, гасить колебания конструкции.
Для усиления эффекта во внутреннюю полость крыла вместе с жидкостью помещаются элементы, увеличивающие ее массу. В качестве таких элементов может быть использована, например, тяжелая металлическая дробь. Последнюю заключают в сферическую оболочку — контейнер, изготовленный из легкого прочного материала, например из пластмассы. Выталкивающая сила, действующая в жидкости на контейнер с дробью, уменьшает (компенсирует) его силу тяжести. Поэтому наиболее целесообразно использование жидкости с большим удельным весом, например, глицерина и т.п.
Вместе с тем, жидкость, находящаяся в замкнутом объеме, обладая существенной массовой плотностью и объемной упругостью, неизбежно вовлекается и в общие перемещения металлической конструкции крыла, смещая при этом в сторону уменьшения спектр частот ее собственных колебаний. Дозированная закачка жидкости с наполнителем внутрь конструкции, разделенной на отсеки, способна обеспечить более точное управление спектром собственных частот. Отстройка конструкции от резонансных режимов особенно важна в связи с высокой плотностью указанного спектра, а также с невозможностью априорной оценки возбуждаемых форм колебаний конструкции при различных режимах движения на стадии проектирования судна.
Таким образом, жидкость, находящаяся внутри замкнутой полости, проявляет себя двойственным образом: с одной стороны, как присоединенная масса, она снижает частоты собственных колебаний, уводит конструкцию из резонансной области, а с другой, как свободно перемещающаяся масса, препятствует виброперемещениям, снижает амплитуду колебаний основной конструкции.
Для улучшения эксплуатационных качеств оболочки контейнера ее изготавливают двухслойной. Внешний (скользкий) тонкий слой изготавливают из шумопоглощающего износостойкого материала (например, из резины или пластмассы). Внутренний слой должен быть изготовлен из достаточно прочного материала для того, чтобы предотвратить разрушение оболочки дробью (в качестве материала наполнителя может служить, например, пористая пластмасса). Для уменьшения уровня шума, являющегося следствием трения контейнеров о крыло, внутренние поверхности последнего покрывают слоем шумопоглощающего водостойкого материала (например, резины, пластмассы).
Способ осуществляют следующим образом.
Для снижения уровня вынужденной вибрации гидродинамического стабилизатора судна на различных режимах его движения герметичная внутренняя полость крыла, образованная внешней обшивкой и проницаемыми торцевыми переборками, заполняется жидкостью, содержащей элементы, увеличивающие ее массу. Данные элементы представляют собой шары, изготовленные из тяжелого материала, например свинца. Элементы размещены внутри шарообразных пластиковых контейнеров, частично компенсирующих в жидкости силу тяжести, но не массу. Жидкость с элементами, находящаяся внутри крыла и заполняющая весь его внутренний объем, обеспечивает эффективное демпфирование конструкции крыла в широком диапазоне частот.
Подача жидкости внутрь крыла и откачка жидкости и воздуха осуществляются при помощи насосов по трубопроводам (гибким шлангам). В наиболее простом варианте реализации предлагаемого способа в качестве демпфирующей жидкости может быть использована забортная вода, которая свободно поступает во внутренние полости крыла и вытесняет находящийся там воздух через клапаны, установленные в наружной обшивке крыла стабилизатора. При этом шарообразные элементы, обеспечивающие увеличение массы жидкости и усиливающие ее демпфирующий эффект, могут размещаться внутри крыла предварительно (например, еще на этапе его изготовления или монтажа крыла на судне), а трубопровод может использоваться для освобождения внутренней полости от жидкости путем ее продувки сжатым воздухом.
Предлагаемый способ может быть реализован с помощью устройства гашения вынужденной вибрации гидродинамического стабилизатора судна, которое изображено на фиг.1, 2, 3, где на:
фиг.1 показан внешний вид конструкции гидродинамического стабилизатора;
фиг.2 приведен поперечный разрез контейнера;
фиг.3 показан продольный разрез отсека крыла;
Устройство гашения вынужденной вибрации гидродинамического стабилизатора судна содержит (фиг.1): крыло 1 стабилизатора с внутренней герметичной полостью 2, заполняемой водой и контейнерами 3. Крыло 1 стабилизатора включает проницаемые переборки 4, обеспечивающие крылу необходимую прочность. В наиболее простом варианте конструкция имеет впускной 5 и выпускной 6 клапаны с автоматическим управлением для доступа забортной воды и выпуска воздуха из отсека.
Каждый контейнер, помещаемый во внутреннюю полость крыла, имеет (фиг.2) внешнюю оболочку 7, внутрь которой помещена дробь 8.
На фиг.3 показан продольный разрез отсека крыла в плане, а также поперечное сечение A стабилизатора. Закачка и откачка жидкости и воздуха, находящегося внутри крыла 1 (см. фиг.3), осуществляется насосами через гибкие шлаги 9 и 10, проложенные внутри баллера 11 крыла 1.
Таким образом, предложен способ, применение которого позволит эффективно гасить вибрации гидродинамического стабилизатора на различных режимах движения, повысить надежность всего устройства стабилизации, улучшить условия обитаемости в прилежащих помещениях судна. Возможность активного воздействия на вибрацию расширит область допустимых параметров и конструктивных материалов, анализируемых в процессе проектной оптимизации конструкции. При этом появится возможность принятия таких проектных решений, для которых вибрация оказывается главным сдерживающим фактором.
1. Способ снижения уровня вынужденной вибрации гидродинамического стабилизатора судна на различных режимах его движения, включающий перекачку жидкости, отличающийся тем, что внутренние полости крыла стабилизатора, разделенные проницаемыми переборками, заполняют жидкостью с элементами, увеличивающими массу жидкости.
2. Способ снижения уровня вынужденной вибрации гидродинамического стабилизатора судна по п.1, отличающийся тем, что элементы, увеличивающие массу жидкости, выполнены в виде шаров, которые изготавливают из тяжелого материала, например свинца, и помещают их внутрь шарообразных пластиковых контейнеров, частично компенсирующих силу тяжести.
www.freepatent.ru
измеритель пространственных вибраций
Изобретение относится к измерительной технике и может быть использовано для измерения вибрации электроприводов различных приборов. Измеритель пространственных вибраций содержит основание, подвесную систему, вибропреобразователи, связанные с электронным преобразовательным блоком, и подвес для установки подлежащего измерениям изделия. Подвесная система смонтирована на опорах, установленных на основании, и состоит из упругих элементов, выполненных в виде установленных на опоре горизонтально и параллельно друг другу стержней круглого сечения, и упругого элемента, выполненного виде плоской пружины с прорезями, прикрепленной к концам стержней. На упругом элементе размещен подвес, на котором размещены вибропреобразователи. Измеритель оснащен индукционными датчиками, установленными в двух взаимно перпендикулярных плоскостях на опорах и связанными с электронным преобразовательным блоком. Технический результат: повышение точности измерений. 3 з.п. ф-лы, 6 ил.
Рисунки к патенту РФ 2454644
Изобретение относится к измерительной технике и может быть использовано для измерения вибрации электроприводов различных приборов, в частности гироскопов, в процессе их сборки, регулировки, испытаний.
Известно устройство для измерения вибраций, содержащее корпус чувствительного элемента с размещенным в нем постоянным магнитом и катушкой с обмотками, и электронный преобразовательный блок. В корпусе чувствительного элемента установлен датчик виброперемещений, объединенный с постоянным магнитом и закрепленный в корпусе чувствительного элемента на центрирующих пружинах с возможностью перемещения относительно оси неподвижной катушки. Датчик виброперемещений выполнен в виде двух обмоток, одна из которых закреплена на постоянном магните между его полюсами и замкнута накоротко, а другая расположена на неподвижной катушке и выполнена в виде двух симметрично расположенных секций, выходы которых введены в электронный преобразователь и включены на вход входного преобразователя, выполняющего преобразование отношения индуктивных сопротивлений секций обмотки в биполярный сигнал напряжения постоянного тока. Его выход соединен с выходом электронного преобразовательного блока и с расположенным в нем резистивным мостом, снабженным терморезистором, конструктивно совмещенным с нагревателем, одна диагональ резистивного моста соединена с выходом входного преобразователя, а другая соединена с входом операционного усилителя. Выход операционного усилителя через сумматор и усилитель тока соединен по цепи главной обратной связи с обмотками катушки. Кроме того, на выход входного преобразователя включена цепь управления резистивным мостом, содержащая усилитель с передаточной функцией апериодического звена, где его выход соединен с входом звена задания зоны нечувствительности. Выход данного звена местной обратной связью соединен с нагревателем терморезистора резистивного моста, образующего динамическое звено регулирования тока и действия электродинамических сил обмоток катушки на компенсацию сил упругости центрирующих пружин подвеса постоянного магнита и обеспечивающего смещение собственной резонансной частоты в рабочем диапазоне чувствительного элемента в область низких частот. Для подготовки и коррекции переходных процессов регулирования выход входного преобразователя параллельно соединен через интегрирующее звено и дифференцирующее звено с входами сумматора.
(См. патент РФ № 2207522, кл. С01Н 11/02, 2003 г.)
В результате анализа известного устройства необходимо отметить, что оно обеспечивает измерение вибраций только в двух координатах, что снижает точность измерений и ограничивает область применений устройства. Существенным недостатком конструкции является также невозможность разделения угловых и линейных колебаний испытуемого объекта. Кроме того, ручная одноканальная регистрация вибросигналов не позволяет выявлять кратковременные изменения сигналов, что не позволяет выявлять малые дефекты на ранних стадиях.
Техническим результатом настоящего изобретения является разработка измерителя пространственных вибраций для контроля качества сборки широкой гаммы изделий, обеспечивающего высокую точность измерения вибраций, простого и удобного при настройке (перенастройке) на измерение вибраций изделий, имеющих различные габариты.
Указанный технический результат обеспечивается за счет того, что в измерителе пространственных вибраций, содержащем основание, подвесную систему, вибропреобразователи, связанные с электронным преобразовательным блоком, и подвес для установки подлежащего измерениям изделия, новым является то, что подвесная система смонтирована на опорах, установленных на основании и состоит из упругих элементов, выполненных в виде установленных на опоре горизонтально и параллельно друг другу стержней круглого сечения и упругого элемента, выполненного виде плоской пружины с прорезями, прикрепленной к концам стержней, при этом на упругом элементе размещены подвес, на котором размещены вибропреобразователи, при этом измеритель оснащен индукционными датчиками, установленными в двух взаимно перпендикулярных плоскостях на опорах и связанными с электронным преобразовательным блоком, при этом опоры могут иметь возможность перемещения по основанию и фиксации в заданном положении, а подвесная система может быть закрыта герметичным колпаком.
Сущность изобретения поясняется графическими материалами, на которых:
на фиг.1 — комплектация измерителя пространственных вибраций;
на фиг.2 — механическая часть измерителя (без вакуумного колпака);
на фиг.3 — подвесная система измерителя;
на фиг.4 — механическая часть измерителя с вакуумным колпаком;
на фиг.5 — система координат измерителя;
на фиг.6 — блок-схема измерителя.
Измеритель пространственных вибраций, комплектация которого представлена на фиг 1, состоит из электронной части, в состав которой входят блок измерения вибраций (электронный блок), аналого-цифровой преобразователь, персональный компьютер, комплект соединительных кабелей, переходная коробка, сетевой фильтр, и механической части, в состав которой входят блок преобразования вибраций, подвесная система, датчики вибрации.
Механическая часть измерителя (фиг.2) выполнена в виде основания 1, на котором смонтированы левая 2 и правая 3 опоры. Опоры имеют идентичную конструкцию.
На опорах 2 и 3 размещены подвесные системы (они имеют идентичное исполнение), индукционные датчики 4 (по четыре датчика на каждой опоре) и арретиры 5 (по одному на каждой опоре).
Опоры установлены на основании с возможностью перемещения и фиксации в заданном положении. Это позволяет обеспечить измерение вибраций объектов различных размеров. Для обеспечения перемещений опоры могут быть установлены в пазах основания и иметь возможность перемещения в них. Фиксация опор в заданном положении осуществляется винтами 6.
Для откачки/закачки газа в полость устройства, образованную герметичным колпаком, на основании предусмотрены штуцера 7, имеющие возможность соединения с вакуумной системой или системой подачи газа (не входят в комплект измерителя). Для предотвращения утечек и герметизации пространства, образованного основанием и колпаком, по основанию проложена прокладка 8 (фиг.2).
Каждая подвесная система (Фиг.3) измерителя состоит из упругих элементов 9 и 10. Упругие элементы 9 выполнены в виде стержней круглого сечения. Стержни установлены в опорах 2 и 3 горизонтально и параллельно друг другу. Упругий элемент 10 выполнен виде плоской пружины с прорезями и прикреплен к концам стержней 9. На упругом элементе 10 установлен подвес 11. На одной стороне подвеса крепятся четыре вибропреобразователя 12, например, типа АР31.
Индукционные датчики 4 (см. Фиг.2) установлены в двух взаимно перпендикулярных плоскостях на опорах 2 и 3.
На подвесе имеется место для установки подлежащего измерению изделия, которое сверху закрывается хомутом 13 и фиксируется винтом 14.
Для снятия нагрузки с упругих элементов во время установки испытываемого изделия в подвесы и в то время, когда не производятся измерения, в конструкции измерителя предусмотрены арретиры 15, установленные на опорах. Арретиры фиксируются с помощью рейки 16.
На одной из опор установлен блок 17 включения испытываемого изделия.
Механическая часть измерителя накрывается вакуумным колпаком 18 (Фиг.4), что дает возможность проводить испытания в вакууме или любом другом рабочем газе, что позволяет повысить точность испытаний.
Питание блока 17 осуществляется через герметичные разъемы 19. Через разъемы 19 также снимаются сигналы с индукционных датчиков 4 и вибропреобразователей 12.
Наличие индукционных датчиков 4 и вибропреобразователей 12 обеспечивает измерение вибраций по шести координатам (Фиг.5), что дает возможность разделить угловые и линейные колебания испытываемого изделия.
В качестве датчиков вибрации использованы индукционные двухкатушечные датчики (для измерения виброскоростей) и вибропреобразователи типа АР31 (для измерения виброускорений).
Измеритель пространственных вибраций функционирует следующим образом.
Перед проведением измерений опоры 2 и 3 выставляются в соответствии с габаритами испытываемого изделия, например гироскопа, посредством их перемещения по пазу в основании 1 и фиксации с помощью винтов 6. Арретиры 15 фиксируются с помощью рейки 16. Испытываемое изделие устанавливается в правый и левый подвесы, сверху закрывается хомутами 13 и фиксируется с помощью винтов 14. Посредством блока 17 включения испытываемое изделие соединяется с источником питания (в состав измерителя не входит) и включается. Снимается фиксация с арретиров 15.
В случае необходимости подвесные системы закрываются герметичным колпаком и образованная им полость вакуумируется или заполняется газовой средой.
В процессе работы изделия горизонтальные упругие элементы 9 обеспечивают равножесткие линейные перемещения испытываемого изделия в плоскости вращения его ротора. Упругий элемент 10 обеспечивает линейные перемещения вдоль оси вращения и угловые перемещения испытываемого изделия.
Преобразование вибраций в электрическую величину (напряжение) представлено на блок-схеме измерителя вибраций (см. Фиг.6). Вибрация со стороны испытуемого изделия действует на подвесы блока преобразования вибраций. Закрепленные на подвесе датчики вибрации АР31 (на блок-схеме обозначены А1Х, A1.1Y, A1.2Y, A1Z, А2Х, A2.1Y, A2.2Y, A2Z), измеряющие виброускорения, преобразуют вибрацию в электрический сигнал. Далее через усилитель сигнал поступает в переходную коробку, где преобразуется в напряжение, которое подается на усилители блока электроники. В блоке электроники сигнал усиливается и через аналого-цифровой преобразователь передается на персональный компьютер в цифровой форме. Персональный компьютер обрабатывает сигнал и выдает результат.
Индукционные двухкатушечные датчики (на блок-схеме обозначены Д1Х, Д1.1Y, Д1.2Y, Д1Z, Д2Х, Д2.1Y, Д2.2Y, Д2Z), воспринимающие измерительными катушками виброскорости, преобразуют вибрацию в напряжение, которое в свою очередь подается на усилители блока электроники, где усиливается и через аналого-цифровой преобразователь передается на персональный компьютер в виде цифрового сигнала. Персональный компьютер обрабатывает сигнал и выдает результат.
При необходимости воздействия на испытываемое изделие (воздействия на него внешней вибрации) используются силовые катушки датчиков Д. Уровень воздействия на задается оператором посредством персонального компьютера, связанного через цифроаналоговый преобразователь и блок измерения вибраций с силовыми катушками датчика Д.
По окончании процесса измерений изделие снимается с измерителя.
К достоинствам измерителя относится то, что:
— измеритель осуществляет измерение вибраций по шести координатам, что дает возможность разделить измерение угловых и линейных колебаний изделия;
— использование датчиков двух видов, измеряющих виброускорения и виброскорости, обеспечивает высокую точность и информативность измерений;
— использование быстродействующих аналого-цифровых преобразователей и современных средств вычислительной техники повышает точность и быстродействие измерителя пространственных вибраций;
— возможность передвижения левой и правой опоры по пазу в основании существенно упрощает переналадку измерителя для измерения вибраций изделий, имеющих различных габариты;
— выполненные в виде стержней круглого сечения расположенные не в одной плоскости горизонтальные упругие элементы обеспечивают равножесткость линейных перемещений испытуемых изделий;
— упругий элемент опоры, выполненный в виде плоской пружины с прорезями, обеспечивает равножесткость линейных перемещений в плоскости вращения и вдоль оси вращения, а также угловых перемещений испытываемого изделия.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Измеритель пространственных вибраций, содержащий основание, подвесную систему, вибропреобразователи, связанные с электронным преобразовательным блоком, и подвес для установки подлежащего измерениям изделия, отличающийся тем, что подвесная система смонтирована на опорах, установленных на основании, и состоит из упругих элементов, выполненных в виде установленных на опоре горизонтально и параллельно друг другу стержней круглого сечения, и упругого элемента, выполненного виде плоской пружины с прорезями, прикрепленной к концам стержней, при этом на упругом элементе размещен подвес, на котором размещены вибропреобразователи, при этом измеритель оснащен индукционными датчиками, установленными в двух взаимно перпендикулярных плоскостях на опорах и связанными с электронным преобразовательным блоком.
2. Измеритель пространственных вибраций по п.1, отличающийся тем, что опоры имеют возможность перемещения по основанию и фиксации в заданном положении.
3. Измеритель пространственных вибраций по п.1, отличающийся тем, что подвесная система закрыта герметичным колпаком.
4. Измеритель пространственных вибраций по п.1, отличающийся тем, что на основании имеются штуцеры для подсоединения к системе вакуумирования полости измерителя.
Вибрационные войны
Адепты консольных игр исключительно трепетно относятся к нововведениям производителей приставок. По поводу любого мало-мальски значимого изменения конструкции, функциональности или совместимости очередной консоли на форумах, посвященных приставкам, организуются бурные дискуссии, а иногда в сообщениях возникают возгласы протеста, если изменение особо сильно затрагивает тонкие струны душ геймеров. Это неудивительно – ведь изменяя конструкцию, добавляя функции или урезая совместимость с играми для предыдущих поколений приставок, производители наступают на самую больную мозоль потребителя — количество удовольствия от приобретения дорогостоящей игрушки.
Наибольший резонанс в обществе владельцев консолей вызывают, пожалуй, изменения игровых манипуляторов. От формы, количества кнопок, длины соединительного провода или его отсутствия и наличия функций у геймпада напрямую зависит комфорт игрока и развитие заболеваний его суставов.
Примером изменения формы манипулятора, вызвавшего негативный отклик прессы и простых игроков, можно назвать попытку Sony сделать из геймпада PlayStation 3 футуристический банан-бумеранг с кнопками. Выслушав общественное мнение, Sony отказалась от «бумеранга», объявив его прототипом, и воплотила в геймпаде PS3 удачную эргономичную форму манипулятора DualShock 2 от PlayStation 2.
Зато геймпад PS3 был лишен другой немаловажной функции – вибрации. Впрочем, тут вины Sony немного, если не считать виной нарушение патентного законодательства. Естественно, геймеры были сильно возмущены, а некоторые издания назвали отсутствие функции обратной связи главным недостатком консоли (даже главнее высокой цены). Недовольство понятно — вибрация геймпада в особо «горячие» моменты игры является единственной дешевой возможностью приблизить к реальности происходящее на экране. Не говоря уж о других менее существенных, но от этого не менее интересных вариантах применениях вибрирующих устройств. Например, в качестве будильника, если положить контроллер в кастрюлю с неплотно прилегающей крышкой.
Владельцем большей части патентов на функцию вибрационной обратной связи является компания Immersion. Именно она и подала в суд на Sony и Microsoft еще в 2002 году за нарушение патентного законодательства. Microsoft поспешила завершить дело в 2003 году, выплатив компенсацию в размере 26 миллионов долларов, и спокойно продолжила использовать функцию в своих геймпадах. По данным некоторых источников, Microsoft просто купила 10 процентов Immersion. Доподлинно известно, что бывшие соперники заключили соглашение, которое предусматривает не только лицензирование технологии.
А Sony, как истинный самурай, продолжила бороться с Immersion, настаивая на собственной честности и непогрешимости. В результате чего не смогла поставить вибрационные моторы в геймпад PS3 перед выпуском консоли из-за продолжительного судебного разбирательства. На этом неприятности японцев не закончились. В марте 2007 года Sony выплатила Immersion почти 97,2 миллиона долларов в качестве компенсации и еще 22,5 миллиона за лицензирование технологии до 2009 года. В общей сложности Sony отдала Immersion около 150 миллионов долларов, с учетом авторских выплат за два года использования технологии. Эта сумма в два раза меньше той, которую изначально требовала Immersion в 2002 году (299 миллионов).
Пока неизвестно, когда появятся в продаже вибрирующие геймпады для Sony PlayStation 3, сколько они будут стоить и будут ли вообще существовать в природе. Достоверно неизвестно, куда Sony будет встраивать обратную связь, есть только предположения обиженных геймеров, которым приходится довольствоваться датчиками движения в игровых манипуляторах.
Необходимо добавить, что еще до выпуска PS3 Sony высказывала разные версии отсутствия системы вибрации в геймпадах. Сначала представители компании настаивали, что вибрационные моторы невозможно установить в манипулятор из-за наличия в нем системы гироскопов, определяющей положение контроллера в пространстве. Чуть позже появился еще один пресс-релиз, в котором говорилось об отсутствии обратной связи в геймпадах, как о стратегическом решении. Мол, гироскопы совсем не мешают, а вот стоимость контроллера возрастет, если в нем будут реализованы обе технологии. Также Sony заявляла, что геймерам вообще не нужна система обратной связи и это устаревшая технология. Несмотря на душевные метания корпорации с целью выяснить, что же все-таки выглядит правдивее, мнение изданий и общественности сводилось к одному: во всем виновата нехорошая Immersion.
Теперь у Sony есть лицензии и право использовать обратную связь в контроллерах, но компания не торопится анонсировать новую продукцию. Можно предположить, что Sony выпустит еще одну, более дорогую версию контроллера с обратной связью для своей консоли. Если это так, то в PS3 должна быть программно и аппаратно реализована поддержка обратной связи, так же, как и в играх для приставки. Как Sony реализовала эту технологию во время судебных разбирательств с Immersion, остается непонятным. Если же технологии не реализованы, на рынке появится еще одна версия PS3 – на этот раз с обратной связью. Результат этого шага и реакцию геймерского сообщества, к сожалению, предсказать невозможно. На фоне неудовлетворительных продаж консоли ни одно из этих предположений не кажется логичным.
Казалось бы, что история должна на этом завершиться. Тем не менее, 19 июня 2007 года стало известно об иске Microsoft к Immersion, из которого следует, что изобретатель обратной связи не выполнил некие условия контракта и утаил информацию от Microsoft. Журналисты считают, что иск связан с достигнутой договоренностью между Sony и Immersion.
Согласно данным некоторых изданий, в 2003 году компании заключили соглашение, по которому Immersion должна выплатить Microsoft 15 миллионов долларов в случае выигрыша дела у Sony и комиссионных, если сумма выплат проигравшей стороны превысит 100 миллионов долларов.
Официального подтверждения этому пока нет. Да и сомнительно, что оно когда-либо появится. В таком случае у Sony будет право предъявить Microsoft обвинение в нечестной конкурентной борьбе. А на геймерских форумах темы об отсутствии обратной связи в PS3 опять станут популярными. Только содержание изменится, ведь геймеры получат ответ на вечный вопрос «кто виноват?» применительно к геймпадам консоли.
m.lenta.ru