ЭЛЕКТРИЧЕСКИЙ ТОК В ВАКУУМЕ

Что такое вакуум?
— это такая степень разрежения газа, при которой соударений молекул практически нет;

— электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;
— создать эл.ток в вакууме можно, если использовать источник заряженных частиц;
— действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

— это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.
Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.
В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него ( т.к. электрод при потере электронов заряжается положительно).
Чем выше температура металла, тем выше плотность электронного облака.

Электрический ток в вакууме возможен в электронных лампах.
Электронная лампа — это устройство, в котором применяется явление термоэлектронной эмиссии.

Вакуумный диод — это двухэлектродная ( А- анод и К — катод ) электронная лампа.
Внутри стеклянного баллона создается очень низкое давление

Н — нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает
постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью.
Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.


Вольтамперная характеристика вакуумного диода.

При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и электрический ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения.
Вакуумный диод используется для выпрямления переменного тока.

Ток на входе диодного выпрямителя:


Ток на выходе выпрямителя:

— это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

Свойства электронных пучков:

— отклоняются в электрических полях;
— отклоняются в магнитных полях под действием силы Лоренца;
— при торможении пучка, попадающего на вещество возникает рентгеновское излучение;
— вызывает свечение ( люминисценцию ) некоторых твердых и жидких тел ( люминофоров );
— нагревают вещество, попадая на него.

Электронно — лучевая трубка ( ЭЛТ )

— используются явления термоэлектронной эмиссии и свойства электронных пучков.

ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих
пластин-электродов и экрана.
В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами.

Существуют два вида трубок:

1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);
2) с электромагнитным управлением ( добавляются магнитные отклоняющие катушки ).

Основное применение ЭЛТ:

кинескопы в телеаппаратуре;
дисплеи ЭВМ;
электронные осциллографы в измерительной технике.

Другие страницы по теме «Электричество» за 10-11 класс:

class-fizika.narod.ru

Электрический ток в вакууме. Электронно-лучевая трубка

«Физика — 10 класс»

Какое физическое явление называют постоянным током?
Каковы условия существования электрического тока?

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия.

Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Диод.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение.

Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами.

Перечислим свойства электронных пучков (катодных лучей).

1) Электроны в пучке движутся по прямым линиям.
2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.
3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.
4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.

5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).
6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.
7) Электронные пучки обладают ионизирующей способностью.
8) Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка.

Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка (рис. 16.23). Она состоит из катода, управляющего электрода и анода (чаще несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число электронов в пучке). Каждый анод (А 1 и А2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

Электронно-лучевые трубки широко применялись в дисплеях — устройствах, присоединяемых к электронно-вычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная и переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, а также воображаемые объекгы, подчиняющиеся законам, записанным в программе вычислительной машины.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электрический ток в различных средах — Физика, учебник для 10 класса — Класс!ная физика

class-fizika.ru

Ток в вакууме законы

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами — электронной эмиссии (от латинского emissio — выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj . Соответственно потенциальная энергия электрона уменьшается на e Dj .

Распределение потенциальной энергии электрона U для ограниченного металла показано на рис. 1.

Диаграмма потенциальной энергии электрона U в ограниченном металле

Здесь W 0 — уровень энергии покоящегося электрона вне металла, F — уровень Ферми (значение энергии, ниже которой все состояния системы частиц (фермионов), при абсолютном нуле заняты), E c — наименьшая энергия электронов проводимости (дно зоны проводимости). Распределение имеет вид потенциальной ямы, ее глубина e Dj =W 0 — E c (электронное сродство); Ф = W 0 — F — термоэлектронная работа выхода (работа выхода).

Условие вылета электрона из металла: W і W 0 , где W — полная энергия электрона внутри металла.

При комнатных температурах это условие выполняется лишь для ничтожной части электронов, значит, для увеличения числа покидающих металл электронов необходимо затратить определенную работу, то есть сообщить им дополнительную энергию, достаточную для вырывания из металла, наблюдая электронную эмиссию: при нагревании металла — термоэлектронную, при бомбардировке электронами или ионами — вторичную, при освещении — фотоэмиссию.

Рассмотрим термоэлектронную эмиссию.

Если испущенные раскаленным металлом электроны ускорить электрическим полем, то они образуют ток. Такой электронный ток может быть получен в вакууме, где столкновения с молекулами и атомами не мешают движению электронов.

Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала (молибден, вольфрам и др.), накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод.

Рассмотрим схему для наблюдения термоэлектронной эмиссии (рис. 2).

Электрическая схема для наблюдения термоэлектронной эмиссии

Цепь содержит диод Д , подогреваемый катод которого соединен с отрицательным полюсом батареи Б , а анод — с ее положительным полюсом; миллиамперметр mA , измеряющий силу тока через диод Д , и вольтметр V, измеряющий напряжение между катодом и анодом. При холодном катоде тока в цепи нет, так как сильно разряженный газ (вакуум) внутри диода не содержит заряженных частиц. Если катод раскалить с помощью дополнительного источника, то миллиамперметр зарегистрирует появление тока.

При постоянной температуре катода сила термоэлектронного тока в диоде возрастает с увеличением разности потенциалов между анодом и катодом (см. рис. 3).

Вольтамперные характеристики диода при различных температурах катода

Однако эта зависимость не выражается законом аналогичным закону Ома, по которому сила тока пропорциональна разности потенциалов; эта зависимость носит более сложный характер, графически представленный на рисунке 2, например, кривой 0-1-4 (вольтамперная характеристика). При увеличении положительного потенциала анода сила тока возрастает в соответствии с кривой 0-1, при дальнейшем возрастании анодного напряжения сила тока достигает некоторого максимального значения i н , называемого током насыщения диода, и почти перестает зависеть от анодного напряжения (участок кривой 1-4).

Качественно такая зависимость тока диода от напряжения объясняется следующим образом. При разности потенциалов равной нулю сила тока через диод (при достаточном расстоянии между электродами) тоже равна нулю, так как электроны, покинувшие катод, образуют вблизи него электронное облако, создающее электрическое поле, тормозящее вновь вылетающие электроны. Эмиссия электронов прекращается: сколько электронов покидает металл, столько же в него возвращается под действием обратного поля электронного облака. При увеличении анодного напряжения концентрация электронов в облаке уменьшается, тормозящее действие его уменьшается, анодный ток увеличивается.

Зависимость силы тока диода i от анодного напряжения U имеет вид:

,

где a — коэффициент, зависящий от формы и расположения электродов.

Это уравнение описывает кривую 0-1-2-3, и носит название закона Богуславского — Лэнгмюра или “закона 3/2”.

Когда потенциал анода становится настолько большим, что все электроны, покидающие катод за каждую единицу времени, попадают на анод, ток достигает максимального значения и перестает зависеть от анодного напряжения.

При увеличении температуры катода вольтамперная характеристика изображается кривыми 0-1-2-5, 0-1-2-3-6 и т.д., то есть при разных температурах различными оказываются значения тока насыщения i н , которые быстро увеличиваются с возрастанием температуры. Одновременно увеличивается анодное напряжение, при котором устанавливается ток насыщения.

Время инициации (log t o от -6 до -4);

Время существования (log t c от -4 до 15);

Время деградации (log t d от -6 до -4);

Время оптимального проявления (log t k от -4 до -2).

Технические реализации эффекта

Техническая реализация эффекта

Берем вакуумный диод, подаем на анод вольт 100 и меряем анодный ток. Он равен нулю. После этого дополнительно подаем 6,3 В на подогрев катода. Возникает анодный ток, который зависит от напряжения на аноде по закону трех вторых, как указано в содержательной части.

Электрические токи в вакууме имеют широчайшую область применения. Это все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, вакуумные генераторы СВЧ, такие как магнетроны, лампы бегущей волны и т.п.

1. Фриш С.Э., Тиморева А.В. Курс общей физики.- М-Л: Государственное издательство технико-теоретическое издательство, 1952.- Т.2.- С.226-228.

2. Калашников С.Г. Электричество. М.: Наука, 1977.- С.339-342.

  • электрический ток
  • электрический ток в вакууме
  • вакуумный диод
  • анод
  • катод
  • ток насыщения
  • вольтамперная характеристика
  • термоэлектронная эмиссия
  • фотоэмиссия
  • эмиссия

ligis.ru

Первые два из этих условий задают потенциалы, соответственно, катода и анода, а последнее есть повторение (3.57). Имеющееся здесь кажущееся противоречие — три граничных условия для уравнения второго порядка (3.59), — разрешается тем, что константа A , входящая в уравнение, является неопределенной, поскольку связана с искомой величиной j .

Для получения первого интеграла умножим левую и правую части уравнения (3.58) на d ϕ ∕ d x и результат запишем в виде

d d x d ϕ d x 2 = 4 A d d x ϕ ,

что после интегрирования дает

d ϕ d x 2 = 4 A ϕ ( x ) + C .

Значение постоянной интегрирования C = 0 определяется из крайних условий (3.60). Проинтегрировав полученное соотношение

d ϕ d x = 2 A ϕ 1 ∕ 4

еще один раз и использовав условие ϕ ( 0 ) = 0 , получаем

4 3 ϕ 4 ∕ 3 = 2 A x ,

откуда с использованием среднего условия (3.60) определяем значение константы

A = 4 9 U 3 ∕ 2 d 2 .

Следовательно, окончательный результат для распределения потенциала в вакуумном зазоре и для плотности тока такой:

ϕ ( x ) = U x d 4 ∕ 3 , j = ϰ U 3 ∕ 2 d 2 , ϰ = 2 e m 1 9 π .

Полученная зависимость плотности тока, пропорциональной приложенному напряжению в степени 3/2, и называется законом трех вторых.

Заметим в заключение, что экспериментальные результаты в малой окрестности точки j = 0 , U = 0 несколько отличаются от теоретических: экспериментальная кривая не точно проходит через точку (0,0). Это слабое различие обусловлено тем, что покидающие катод электроны могут обладать некоторой кинетической энергией, которая в законе сохранения энергии здесь не учитывалась.

www.phys.nsu.ru

Виды вакуума

Как же ведет себя электрический ток в вакууме? Как и любой ток, ток в вакууме появляется при наличии источника со свободными заряженными частицами.

Какими частицами создается электрический ток в вакууме? Чтобы создать вакуум в каком-либо закрытом сосуде, необходимо из него откачать газ. Делают это чаще всего с помощью вакуумного насоса. Это такое устройство, которое необходимо, чтобы откачать газ или пар до нужного для опыта давления.

Существует четыре вида вакуума: низкий вакуум, средний вакуум, высокий вакуум и сверхвысокий вакуум.

Рис. 1. Характеристики вакуума

Электрический ток в вакууме

Ток в вакууме не может существовать самостоятельно, так как вакуум является диэлектриком. В таком случае создать ток можно с помощью термоэлектронной эмиссии. Термоэлектронная эмиссия – явление, при котором электроны выходят из металлов при нагревании. Такие электроны называются термоэлектронами, а все тело – эмиттер.

На это явление впервые обратил внимание американский ученый Томас Эдисон в 1879 году.

Рис. 2. Термоэлектронная эмиссия

Эмиссия делится на:

  • вторичную электронную (выбивание быстрыми электронами);
  • термоэлектронную (испарение электронов с горячего катода);
  • фотоэлектронная(электроны выбиваются светом);
  • электронная(выбивание сильным полем).
  • Электроны смогут вылететь из металла, если будут обладать достаточной кинетической энергией. Она должна быть больше работы выхода электронов для данного металла. Электроны, вылетающие из катода, образуют электронное облако. Половина из них возвращается в исходное положение. В равновесном состоянии число вылетевших электронов равно количеству вернувшихся. От температуры прямо пропорционально зависит плотность электронного облака (т.е. при повышении температуры, плотность облака становится больше).

    Применение электрического тока в вакууме

    Электрический ток в вакууме используется в различных электронных приборах. Одним из таких приборов является вакуумный диод

    Рис. 3. Вакуумный диод

    Состоит он из баллона, который включает 2 электрода – катод и анод.

    Что мы узнали?

    Кратко о электрическом токе в вакууме мы узнали их этой статьи. Для существования его в вакууме в первую очередь необходимо наличие свободных заряженных частиц. Также рассмотрены виды вакуума и их характеристики. Необходимым для изучения является понятие термоэлектронной эмиссии. Информацию можно использовать для подготовки доклада и сообщения на уроке физики.

    obrazovaka.ru