ЭНЕРГИИ СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЗАКОН — общий закон природы: энергия любой замкнутой системы при всех процессах, происходящих в системе, остается постоянной (сохраняется). Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы. Для незамкнутой системы увеличение (уменьшение) ее энергии равно убыли (возрастанию) энергии взаимодействующих с ней тел и физических полей.

АРХИМЕДА ЗАКОН — закон гидро- и аэростатики: на тело, погруженное в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх, числено равная весу жидкости или газа, вытесненного телом, и приложенная в центре тяжести погруженной части тела. FA= gV, где r — плотность жидкости или газа, V — объем погруженной части тела. Иначе можно сформулировать так: тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость (или газ). Тогда P= mg — FA Открыт др. гр. ученым Архимедом в 212г. до н.э. Является основой теории плавания тел.

ВСЕМИРНОГО ТЯГОТЕНИЯ ЗАКОН — закон тяготения Ньютона: все тела притягиваются друг к другу с силой прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними: , где M и m — массы взаимодействующих тел, R — расстояние между этими телами, G — гравитационная постоянная (в СИ G=6,67 . 10 -11 Н . м 2 /кг 2 .

ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ, механический принцип относительности — принцип классической механики: в любых инерциальных системах отсчета все механические явления протекают одинаково при одних и тех же условиях. Ср. относительности принцип.

ГУКА ЗАКОН — закон, согласно которому упругие деформации прямо пропорциональны вызывающим их внешним воздействиям.

ИМПУЛЬСА СОХРАНЕНИЯ ЗАКОН — закон механики: импульс любой замкнутой системы при всех процессах, происходящих в системе, остается постоянным (сохраняется) и может только перераспределяться между частями системы в результате их взаимодействия.

НЬЮТОНА ЗАКОНЫ — три закона, лежащие в основе ньютоновской классической механики. 1-й закон (закон инерции): материальная точка находится в состоянии прямолинейного и равномерного движения или покоя, если на нее не действуют другие тела или действие этих тел скомпенсировано. 2-й закон (основной закон динамики): ускорение, полученное телом, прямо пропорционально равнодействующей всех сил, действующих на тело, и обратно пропорционально массе тела (). 3-й закон: две материальные точки взаимодействуют друг с другом силами одной природы равными по величине и противоположными по направлению вдоль прямой, соединяющей эти точки ().

ОТНОСИТЕЛЬНОСТИ ПРИНЦИП — один из постулатов относительности теории, утверждающий, что в любых инерциальных системах отсчета все физические (механические, электромагнитные и др.) явления при одних и тех же условиях протекают одинаково. Является обобщением Галилея принципа относительности на все физические явления (кроме тяготения).

2. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

АВОГАДРО ЗАКОН — один из основных законов идеальных газов: в равных объемах различных газов при одинаковой температуре и давлении содержится одинаковое число молекул. Открыт в 1811 году итал. физиком А.Авогадро(1776-1856).

БОЙЛЯ-МАРИОТТА ЗАКОН — один из законов идеального газа: для данной массы данного газа при постоянной температуре произведение давления на объем есть величина постоянная. Формула: pV=const. Описывает изотермический процесс.

ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ — один из основных законов термодинамики, согласно которому невозможен периодический процесс единственным результатом которого является совершение работы, эквивалентной количеству теплоты, полученному от нагревателя. Другая формулировка: невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от менее нагретого тела к более нагретому. В.з.т. выражает стремление системы, состоящей из большого количества хаотически движущихся частиц, к самопроизвольному переходу из состояний менее вероятных в состояния более вероятные. Запрещает создание вечного двигателя второго рода.

ГЕЙ-ЛЮССАКА ЗАКОН — газовый закон: для данной массы данного газа при постоянном давлении отношение объема к абсолютной температуре есть величина постоянная ,где =1/273 К -1 — температурный коэффициент объемного расширения.

ДАЛЬТОНА ЗАКОН — один из основных газовых законов: давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений этих газов.

ПАСКАЛЯ ЗАКОН — основной закон гидростатики: давление, производимое внешними силами на поверхность жидкости или газа, передается одинаково по всем направлениям.

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ — один из основных законов термодинамики, являющийся законом сохранения энергии для термодинамической системы: количество теплоты Q, сообщенное системе, расходуется на изменение внутренней энергии системы U и совершение системой работы A против внешних сил. Формула: Q= U+A. Лежит в основе работы тепловых машин.

ШАРЛЯ ЗАКОН — один из основных газовых законов: давление данной массы идеального газа при постоянном объеме прямо пропорционально температуре: где p0 — давление при 0 0 С, =1/273,15 К -1 — температурный коэффициент давления.

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

АМПЕРА ЗАКОН — закон взаимодействия двух проводников с токами; параллельные проводники с токами одного направления притягиваются, а с токами противоположного направления — отталкиваются. А.з. называют также закон, определяющий силу, действующую в магнитном поле на малый отрезок проводника с током. Открыт в 1820г. А.-М. Ампером.

ДЖОУЛЯ-ЛЕНЦА ЗАКОН — закон, описывающий тепловое действие электрического тока. Согласно Д. — Л.з. количество теплоты, выделяющееся в проводнике при прохождении по нему постоянного тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения.

ЗАРЯДА СОХРАНЕНИЯ ЗАКОН — один из фундаментальных законов природы: алгебраическая сумма электрических зарядов любой электрически изолированной системы остается неизменной. В электрически изолированной системе З.с.з. допускает появление новых заряженных частиц (напр., при электролитической диссоциации, ионизации газов, рождении пар частица — античастица и др.), но суммарный электрический заряд появившихся частиц всегда должен быть равен нулю.

КУЛОНА ЗАКОН — основной закон электростатики, выражающий зависимость силы взаимодействия двух неподвижных точечных зарядов от расстояния между ними: два неподвижных точечных заряда взаимодействуют с силой прямо пропорциональной произведению величин этих зарядов и обратно пропорциональной квадрату расстояния между ними и диэлектрической проницаемости среды, в которой находятся заряды. В СИ имеет вид: . Величина числено равна силе, действующей между двумя точечными неподвижными зарядами по 1 Кл каждый, находящимися в вакууме на расстоянии 1 м друг от друга. К.з. является одним из экспериментальных обоснований электродинамики.

ЛЕВОЙ РУКИ ПРАВИЛО — правило, определяющее направление силы, которая действует на находящийся в магнитном поле проводник с током (или движущуюся заряженную частицу). Оно гласит: если левую руку расположить так, чтобы вытянутые пальцы показывали направление тока (скорости частицы), а силовые линии магнитного поля (линии магнитной индукции) входили в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник (положительную частицу; в случае отрицательной частицы направление силы противоположно).

ЛЕНЦА ПРАВИЛО (ЗАКОН) — правило, определяющее направление индукционных токов, возникающих при электромагнитной индукции. Согласно Л.п. индукционный ток всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшие этот ток. Л.п. — следствие закона сохранения энергии.

ОМА ЗАКОН — один из основных законов электрического тока: сила постоянного электрического тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению. Справедлив для металлических проводников и электролитов, температура которых поддерживается постоянной. В случае полной цепи формулируется следующим образом: сила постоянного электрического тока в цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению электрической цепи.

ПРАВОЙ РУКИ ПРАВИЛО — правило, определяющее 1) направление индукционного тока в проводнике, движущемся в магнитном поле: если ладонь правой руки расположить так, чтобы в нее входили линии магнитной индукции, а отогнутый большой палец направить по движению

проводника, то четыре вытянутых пальца покажут направление индукционного тока; 2) направление линий магнитной индукции прямолинейного проводника с током: если большой палец правой руки расположить по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направление линий магнитной индукции.

ФАРАДЕЯ ЗАКОНЫ — основные законы электролиза. Первый Фарадея закон: масса вещества, выделившегося на электроде при прохождении электрического тока, прямо пропорциональна количеству электричества (заряду), прошедшему через электролит (m=kq=kIt). Второй Ф.з.: отношение масс различных веществ, претерпевающих химические превращения на электродах при прохождении одинаковых электрических зарядов через электролит равно отношению химических эквивалентов. Установлены в 1833-34 г. М. Фарадеем. Обобщенный закон электролиза имеет вид: , где M — молярная (атомная) масса, z — валентность, F — Фарадея постоянная . Ф.п. равна произведению элементарного электрического заряда на постоянную Авогадро. F=e . NA. Определяет заряд, прохождение которого через электролит приводит к выделению на электроде 1 моля одновалентного вещества. F=(96484,56 0,27) Кл./моль. Названа в честь М.Фарадея.

ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ ЗАКОН — закон, описывающий явление возникновения электрического поля при изменении магнитного (явление электромагнитной индукции): электродвижущая сила индукции прямо пропорциональна скорости изменения магнитного потока. Коэффициент пропорциональности определяется системой единиц, знак — Ленца правилом. Формула в СИ: , где Ф — изменение магнитного потока, а t — промежуток времени, в течение которого это изменение произошло. Открыт М. Фарадеем.

ГЮЙГЕНСА ПРИНЦИП — метод, позволяющий определить положение фронта волны в любой момент времени. Согласно г.п. все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t t совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

ГЮЙГЕНСА — ФРЕНЕЛЯ — ПРИНЦИП — приближенный метод решения задач о распространении волн. Г.-Ф. п. гласит: в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Позволяет решать простейшие задачи дифракции света.

ОТРАЖЕНИЯ ВОЛН ЗАКОН — луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

ПРЕЛОМЛЕНИЕ СВЕТА — изменение направления распространения света (электромагнитной волны) при переходе из одной среды в другую, отличающуюся от первой показателем преломления. Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой.

ПРЯМОЛИНЕЙНОГО РАСПРОСТРАНЕНИЯ СВЕТА ЗАКОН — закон геометрической оптики, заключающийся в том, что в однородной среде свет распространяется прямолинейно. Объясняет, напр., образование тени и полутени.

6. АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА.

БОРА ПОСТУЛАТЫ — основные допущения, введенные без доказательства Н.Бором, и положенные в основу БОРА ТЕОРИИ: 1) Атомная система устойчива только в стационарных состояниях, которые соответствуют дискретной последовательности значений энергии атома. Каждое изменение этой энергии связано с полным переходом атома из одного стационарного состояния в другое. 2) Поглощение и излучение энергии атомом происходит по закону, согласно которому связанное с переходом излучение является монохроматическим и обладает частотой : h =Ei-Ek, где h —Планка постоянная, а Ei и Ek — энергии атома в стационарных состояниях.

distolymp2.spbu.ru

Назовите закон движения

Движение человека является механическим, то есть это изменение тела или его частей относительно других тел. Относительное перемещение описывает кинематика.

Кинематикараздел механики, в котором изучается механическое движение, но не рассматриваются причины, вызывающие это движение. Описание движения как тела человека (его частей) в различных видах спорта, так и различных спортивных снарядов являются неотъемлемой частью спортивной биомеханики и в частности кинематики.

Какой бы материальный объект или явление мы не рассматривали, окажется что вне пространства и вне времени ничего не существует. Любой предмет имеет пространственные размеры и форму, находится в каком-то месте пространства по отношению к другому предмету. Любой процесс, в котором участвуют материальные объекты, имеет во времени начало и конец, сколько то длится во времени, может совершаться раньше или позже другого процесса. Именно по этому возникает необходимость измерять пространственную и временную протяжённости.

Основные единицы измерения кинематических характеристик в международной системе измерений СИ.

Пространство. Одна сорокамиллионная часть длины земного меридиана, проходящего через Париж, была названа метром. Поэтому длина измеряется в метрах (м) и кратных ему единицах измерения: километрах (км), сантиметрах (см) и т. д.

Время – одно из фундаментальных понятий. Можно сказать, что это то, что отделяет два последовательных события. Один из способов измерить время – это использовать любой регулярно повторяющийся процесс. Одна восьмидесяти шести тысячная часть земных суток была выбрана за единицу времени и была названа секундой (с) и кратных ей единицах (минутах, часах и т. д.).

В спорте используются специальные временные характеристики:

Момент времени (t) — это временная мера положения материальной точки, звеньев тела или системы тел. Моментами времени обозначают начало и окончание движения или какой либо его части или фазы.

Длительность движения (∆t) – это его временная мера, которая измеряется разностью моментов окончания и начала движения ∆t = tкон. – tнач.

Темп движения (N) – это временная мера повторности движений, повторяющихся в единицу времени. N = 1/∆t; (1/c) или (цикл/c).

Ритм движенийэто временная мера соотношения частей (фаз) движений. Он определяется по соотношению длительности частей движения.

Положение тела в пространстве определяют относительно некоторой системы отсчёта, которая включает в себя тело отсчёта (то есть относительно чего рассматривается движение) и систему координат, необходимую для описания на качественном уровне положение тела в той или иной части пространства.

С телом отсчёта связывают начало и направление измерения. Например, в целом ряде соревнований началом координат можно выбрать положение старта. От него уже рассчитывают различные соревновательные дистанции во всех циклических видах спорта. Тем самым в выбранной системе координат «старт – финиш» определяют расстояние в пространстве, на которое переместится спортсмен при движении. Любое промежуточное положение тела спортсмена во время движения характеризуется текущей координатой внутри выбранного дистанционного интервала.

Для точного определения спортивного результата правилами соревнований предусматривается по какой точке (пункт отсчёта) ведётся отсчёт: по носку конька конькобежца, по выступающей точке грудной клетки бегуна-спринтера, или по заднему краю следа приземляющегося прыгуна в длину.

В некоторых случаях для точного описания движения законов биомеханики вводится понятие материальная точка.

Материальная точкаэто тело, размерами и внутренней структурой которого в данных условиях можно пренебречь.

Движение тел по характеру и интенсивности могут быть различными. Чтобы охарактеризовать эти различия, в кинематике вводят ряд терминов, представленных ниже.

Траекториялиния, описываемая в пространстве движущейся точкой тела. При биомеханическом анализе движений прежде всего рассматривают траектории движений характерных точек человека. Как правило, такими точками являются суставы тела. По виду траектории движений делят на прямолинейные (прямая линия) и криволинейные (любая линия, отличная от прямой).

Перемещениеэто векторная разность конечного и начального положения тела. Следовательно, перемещение характеризует окончательный результат движения.

Путьэто длина участка траектории, пройденной телом или точкой тела за выбранный промежуток времени.

Траектория движения точки и её перемещение

Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.

Скоростьэто отношение пройденного пути ко времени, за который он пройден. Она показывает, как быстро изменяется положение тела в пространстве. Поскольку скорость – это вектор, то она также указывает, в каком направлении движется тело или точка тела.

Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения, м/с:

Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.

Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определённую дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени (3-4) секунды, высококвалифицированные спринтеры до 5 — 6 секунд). Средняя скорость стайеров гораздо ниже, чем спринтеров. Ниже показана зависимость средней скорости (V) от длины дистанции (S).

Зависимость средней скорости бега от длины дистанции

Мировые спортивные рекорды и показанная в них средняя скорость

Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t0 тело находилось в точке с координатой Х0, а в момент времени t1 – в точке с координатой Х1, то пройденный путь ∆Х = Х1 – Х0, а время движения ∆t = t1 – t0 (символ ∆ обозначает разность однотипных величин или для обозначения очень маленьких интервалов). В этом случае:

Размерность скорости в СИ – м/с. При преодолении больших расстояний скорость определяют в км/час. При необходимости такие значения можно перевести в СИ. Например, 54 км/час = 54000 м /3600 с = 15 м/с.

Средние скорости на различных участках пути значительно отличаются даже при относительно равномерном прохождении дистанции: стартовый разгон, преодоление дистанции с внутрицикловыми колебаниями скорости (во время отталкивания скорость увеличивается, во время свободного скольжения в беге на коньках или фазы полёта в л/а беге – уменьшается), финиширование. По мере уменьшения интервала, по которому вычисляется скорость можно определить скорость в данной точке траектории, которая называется мгновенной скоростью.

Мгновенная скорость движения, или скоростью в данной точке траектории называется предел, к которому стремится перемещение тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Мгновенная скорость – величина векторная.

Направление вектора мгновенной скорости

Если величина скорости (или модуль вектора скорости) не меняется, движение равномерное, при изменении модуля скорости – неравномерное.

Равномерным называют движение, при котором за любые равные промежутки времени тело проходит одинаковые пути. В этом случае величина скорости остаётся неизменной (по направлению скорость может изменяться, если движение криволинейное).

Прямолинейным называют движение, при котором траектория является прямой линией. В этом случае направление скорости остаётся неизменным, (величина скорости может изменяться, если движение не равномерное).

Равномерным прямолинейным называют движение, которое является и равномерным и прямолинейным. В этом случае неизменными остаются и величина и направление.

В общем случае при движении тела изменяются и величина и направление вектора скорости. Для того, чтобы охарактеризовать насколько быстро происходят эти изменения, используют специальную величину – ускорение.

Ускорениеэто величина, равная отношению изменения скорости движения тела к длительности промежутка времени, за которое это изменение скорости произошло. Среднее ускорение на основе этого определения равно, м/с²:

Мгновенным ускорением называется физическая величина, равная пределу, к которому стремится среднее ускорение за промежуток ∆t → 0, м/с²:

Поскольку вдоль траектории скорость может изменяться как по величине так и по направлению, вектор ускорения имеет две составляющие.

Составляющая вектора ускорения а, направленная вдоль касательной к траектории в данной точке, называется тангенциальным ускорением, которое характеризует изменение вектора скорости по величине.

Составляющая вектора ускорения а, направленная по нормали к касательной в данной точке траектории, называется нормальным ускорением. Оно характеризует изменение вектора скорости по направлению в случае криволинейного движения. Естественно, что когда тело движется по траектории, являющейся прямой линией, нормальное ускорение равно нулю.

Прямолинейное движение называется равнопеременным, если за любые промежутки времени скорость тела изменяется на одну и ту же величину. В этом случае отношение

∆V/ ∆t одинаково для любых интервалов времени. Поэтому величина и направление ускорения остаются неизменными: а = const.

Для прямолинейного движения вектор ускорения направлен по линии движения. Если направление ускорения совпадает с направлением вектора скорости, то величина скорости будет возрастать. В этом случае движение называют равноускоренным. Если направление ускорения противоположно направлению вектора скорости, то величина скорости будет уменьшаться. В этом случае движение называют равнозамедленным. В природе существует естественное равноускоренное движение – это свободное падение.

Свободным падением – называется падение тела, если на него действует единственная сила – сила тяжести. Опыты, проведённые Галилеем, показали, что при свободном падении все тела движутся с одинаковым ускорением свободного падения и обозначаются буквой ĝ. Вблизи поверхности Земли ĝ = 9,8 м/с². Ускорение свободного падения обусловлено притяжением со стороны Земли и направлено вертикально вниз. Строго говоря, такое движение возможно лишь в вакууме. Падение в воздухе можно считать приблизительно свободным.

Траектория движения свободно падающего тела зависит от направления вектора начальной скорости. Если тело брошено вертикально вниз, то траектория – вертикальный отрезок, а движение называется равнопеременным. Если тело брошено вертикально вверх, то траектория состоит из двух вертикальных отрезков. Сначала тело поднимается, двигаясь равнозамедленно. В точке наивысшего подъёма скорость становится равной нулю, после чего тело опускается, двигаясь равноускоренно.

Если вектор начальной скорости направлен под углом к горизонту, то движение происходит по параболе. Так двигаются брошенный мяч, диск, спортсмен, прыгающий в длину, летящая пуля и др.

Движение тела, брошенного под углом к горизонту

В зависимости от формы представления кинематических параметров существуют различные виды законов движения.

Закон движения – это одна из форм определения положения тела в пространстве, которая может быть выражена:

• аналитически, то есть с помощью формул. Эта разновидность закона движения задаётся с помощью уравнений движения: x = x(t), y = y(t), z = z(t);

• графически, то есть с помощью графиков изменения координат точки в зависимости от времени;

• таблично, то есть в виде вектора данных, когда в один столбец таблицы заносят числовые отсчёты времени, а в другой в сопоставлении с первым – координаты точки или точек тела.

opace.ru

Финансы и кредит

Законы кредита

Для более полной характеристики сущности кредита необходимо рассмотреть законы его функционирования — экономические законы, представляющие собой объективно существующие, необходимые, устойчивые причинно-следственные связи и взаимозависимости кредита и других экономических категорий. В них раскрываются наиболее типичные, существенные черты функционирования кредитных отношений.

Законы кредита объективны и носят исторический характер. Это означает, что они действуют независимо от сознания людей, а их содержание, способ действия и форма проявления могут модифицироваться по мере развития производительных сил и экономических отношений общества.

Обычно в экономической литературе выделяют следующие законы кредита:

— закон возвратности кредита;
— закон сохранения ссуженной стоимости;
— закон равновесия между высвобождаемыми и перераспределяемыми на началах возвратности ресурсами;
— закон срочности кредита.

Законы кредита выступают, прежде всего, как законы его движения, то есть законы движения ссуженной стоимости. Действительно, кредитное отношение не может возникнуть и функционировать без передачи стоимости от кредитора заемщику и обратно, оно существует только на базе пространственного перемещения ссужаемых средств. Движение ссуженной стоимости, таким образом, является важнейшим сущностным свойством кредита, причем это движение подчиняется определенным экономическим законам, к которым можно отнести закон возвратности кредита и закон сохранения ссуженной стоимости.

Закон возвратности кредита многие экономисты рассматривают как основной закон кредита. Его содержание выражается в возвращении ссуженной стоимости к первоначальному пункту движения, то есть передаче ее от заемщика к кредитору.

Важно отметить, что в данном случае происходит возврат той же стоимости, что ссужалась первоначально, с теми же потребительскими свойствами (так как в любой кредитной сделке, независимо от ее вида, в конечном счете происходит отсрочка возврата средств в денежной форме). Этим возвратность кредита отличается, например, от специфической возвратности финансовых ресурсов, которая осуществляется опосредованно в виде овеществления финансовых вложений в результате их использования.

Необходимо также учитывать, что возвратность ссуженной стоимости включает не только процесс ее передачи от заемщика к кредитору. Она должна предварительно высвободиться в хозяйстве заемщика, то есть должна возвратиться к заемщику после того, как завершит свое движение в его воспроизводственном процессе.

Закон сохранения ссуженной стоимости связан с сущностью кредита как стоимостного отношения, базирующегося на эквивалентности обмена. Содержание этого закона выражается в том, что на всех этапах возвратного движения ссуженной стоимости она сохраняет свою ценность, равнозначна количественно. Другими словами, кредитор по истечении срока кредита должен получить от заемщика стоимость, по ценности равную выданной ссуде.

На практике реализация закона сохранения ссуженной стоимости зависит от характера использования полученного кредита заемщиком, а также от устойчивости покупательной способности денежных единиц (уровня инфляции), поскольку ссуженная стоимость возвращается кредитору, как правило, в денежной форме. Так, непроизводительное или нерациональное использование полученных в ссуду средств может привести к ухудшению кредитоспособности заемщика, и он не сможет в срок полностью погасить задолженность кредитору. В то же время, если заемщик возвращает кредит в полной сумме и в договорные сроки в условиях достаточно высокой инфляции, то вследствие обесценения денег он передает кредитору в действительности стоимость по ценности меньшую, чем полученная им в ссуду.

Закон равновесия между высвобождаемыми и перераспределяемыми на началах возвратности ресурсами выявляет устойчивую связь ссуженной стоимости с ее источниками. Его содержание показывает зависимость движения кредита от источников образования кредитных ресурсов.

Мнение о наличии такой устойчивой причинно обусловленной зависимости достаточно широко распространено среди экономистов. Действительно, кредитные институты, выполняющие посреднические функции в перераспределении временно свободных денежных средств, могут осуществлять кредитные операции в основном в пределах аккумулированных ими средств.

Вместе с тем рассматриваемый закон выражает связь между высвобождаемыми и перераспределяемыми на началах возвратности ресурсами как равновесие между ними, но не равенство. Требование такого равенства было бы не совсем адекватно реальному механизму формирования источников кредитных вложений. Например, необходимо учитывать средства в хозяйственном обороте, которые служат источником образования ссуженной стоимости при коммерческом кредите, а также возможность создания кредитных ресурсов на основе эмиссии денег.

Закон срочности кредита тесно взаимодействует с законом возвратности кредита. Содержание этого закона отражает временный характер кредитного отношения, то есть существование временных границ его функционирования.

Как известно, особенностью кредитной сделки является предоставление ссуженной стоимости только во временное пользование. Это обусловлено, с одной стороны, тем, что высвобождение средств у кредитора носит временный характер и в процессе всей кредитной сделки он сохраняет право собственности на них, а с другой стороны — тем, что потребность заемщика в дополнительных ресурсах также носит временный характер.

Таким образом, кредит как отношение, возникающее на базе возвратного движения стоимости, ограничен во времени, возникает, развивается и прекращает свое существование на определенном временном отрезке. Временный характер кредитных отношений проявляется в том, что их функционирование зависит от продолжительности высвобождения ресурсов в хозяйстве кредитора и длительности кругооборота и оборота ссуженной стоимости в хозяйстве заемщика.

Следует отметить, что в отечественной экономической литературе к настоящему времени сформулирован целый ряд законов кредита, например, закон эффективности кредита, закон обеспечения непрерывности и эффективности воспроизводства на основе кредита, закон экономического предела кредитования предприятий, закон выделения и функционирования ссудного процента и др. При этом подходы к исследованию законов кредита разных авторов существенно отличаются, что отражает дискуссионность и недостаточную разработанность данной проблематики.

В частности, экономисты, трактующие кредитные отношения как форму финансовых отношений, рассматривают специфические законы кредита как форму проявления общеэкономических законов, действующих в рамках финансовых отношений (при этом финансы выступают как опосредствующее звено). С этих позиций законы кредита, с одной стороны, отражают специфику кредитных отношений, а с другой — являются формой реализации финансовых законов.

Однако такая точка зрения часто подвергается критике. Отмечается, что законы кредита и финансовые законы тесно взаимодействуют: и те и другие функционируют в сфере обращения, опосредствуя в то же время общественное воспроизводство в целом; их содержание отражает перераспределительные функции кредита и финансов; они проявляются в общей для них денежной форме. Но одновременно они представляют собой законы самостоятельных экономических категорий и подчинены определенной субординации не по отношению друг к другу, а в системе общих экономических законов воспроизводства.

Ряд авторов рассматривают сущность и закон функционирования экономической категории как однородные, тождественные понятия и, соответственно, не видят необходимости в формулировке законов кредита.

Предметом дискуссии среди экономистов, признающих существование собственных законов кредита, является ряд фундаментальных проблем, в том числе:

— соотношение, соподчиненность сущности и закона. Здесь можно выделить следующие позиции: закон отражает сущность кредита, является проявлением одной из сторон сущности; закон являет собой более глубокую степень познания кредита, чем сущность, последняя отражает лишь одну из сторон закона;
— отнесение законов кредита к воспроизводству в целом или к отдельным его фазам, в частности — к фазе обмена;
— место законов кредита в системе экономических законов общества и их субординация;
— существование одного общего закона функционирования кредитных отношений или системы законов кредита (в последнем случае — их соподчиненность).

Таким образом, нерешенность этих и других основополагающих вопросов, а также дискуссионность сущности кредита обусловливают многообразие формулировок законов кредита, существенное различие мнений по трактовке их содержания.

www.finkredit.com