Алгебра правила дифференцирования

Дифференцирование – это вычисление производной.

1. Формулы дифференцирования.

Основные формулы дифференцирования – в таблице. Их необязательно зазубривать. Поняв некоторые закономерности, вы сможете из одних формул самостоятельно выводить другие.

Ее частными случаями являются формулы x′ = 1 и C′ = 0.

В любой функции вида у = kx + m производная равна угловому коэффициенту k.

Например, дана функция у = 2х + 4. Ее производная в любой точке будет равна 2:

(2х + 4)′ = 2.

Производная функции у = 9х + 5 в любой точке равна 9. И т.д.

А давайте найдем производную функции у = 5х. Для этого представим 5х в виде (5х + 0). Мы получили выражение, похожее на предыдущее. Значит:

Наконец, выясним, чему равна x′.
Применим прием из предыдущего примера: представим х в виде 1х + 0. Тогда получим:

Таким образом, мы самостоятельно вывели еще одну формулу из таблицы:

Идем дальше. Пусть k = 0. Мы знаем, что производная равна коэффициенту. То есть:

(0 · x + m)′ = 0. Но тогда получается, что m′ тоже равна 0 (иначе равенство будет неверным). Пусть m = C, где C – произвольная постоянная. Тогда мы приходим к еще одной истине: производная постоянной равна нулю. То есть получаем еще одну формулу из таблицы:

C′ = 0.

2) Рассмотрим две формулы: (x 2 )′ = 2x и (x n )′ = nx n -1 . Они вроде разные. На самом деле первая формула – это частный случай второй, а на практике они весьма просты.

Например, n = 2, 3, 4, 5, 6. Получится следующее:

Что мы видим? Степень переходит в сомножитель перед x, а новая степень на единицу меньше предыдущей. К примеру, возьмем (x 6 )′. Число 6 из степени переходит в сомножитель, а новая степень равна 5 (на 1 меньше прежней степени).

test1.czl23.ru

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I, формулы 4, 2 и 1. Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I, формулы 3, 5 и 6 и 1.

Применяем правило IV, формулы 5 и 1.

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4. Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4. Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

10.2.6. Решение тригонометрических неравенств. Часть 6

На предыдущих занятиях мы решали тригонометрические неравенства следующих видов:

На этом занятии мы будем решать неравенства вида tgt>a.

Будем применять следующий алгоритм решения (как на прошлом уроке):

3. Находим промежуток значений t, при которых тангенсоида располагается выше прямой у=а. Левая граница этого промежутка arctg a, а правая всегда (π/2)

4. Записываем двойное неравенство для аргумента t, учитывая наименьший период тангенса Т=π (t будет между абсциссами arctg a и (π/2) ).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Разделим обе части неравенства на 3. Сделаем замену данной переменной на t. Тогда получим более простое неравенство.

Определим промежуток значений переменной t, при которых неравенство будет верным. Это абсциссы тех точек графика функции y=tg t, которые лежат выше нашей прямой. Покажем штриховкой эти значения t. Запишем найденные значения аргумента t в виде двойного неравенства.

Второе неравенство.

Решение.

Преобразуем левую часть неравенства по формуле tg (α+β) и получим более простое неравенство. Делаем замену переменной.

Определяем искомый промежуток значений переменной t. Затем выразим х и запишем ответ в виде промежутка. Учтем, что неравенство нестрогое, но что тангенса (π/2) не существует.

Третье неравенство.

Применяем правило для формул приведения:

1) перед приведенной функцией ставят знак приводимой; 2) если в записи аргумента (π/2) взято нечетное число раз, то функцию меняют на кофункцию.

Наш аргумент находится в 3-ей четверти, а котангенс в 3-ей четверти имеет знак «плюс», поэтому, знак приведенной функции не поменяется. В записи данного аргумента (π/2) взято 3 раза (нечетное число), поэтому функцию котангенс поменяем на кофункцию — тангенс.

Теперь данное неравенство приняло вид: tgt≥1. Построим графики функций y=tgt и у=1. Определим промежуток значений аргумента t, при которых неравенство tgt≥1 будет верным. Ответ запишем в виде промежутка. Неравенство у нас нестрогое, но правый конец промежутка не входит в решение неравенства, так как тангенса (π/2) не существует.

Дорогие друзья! Мы решили неравенства с тангенсом графическим способом, но, конечно, существует и более короткое решение — по формулам.

На этом занятии мы решим три неравенства вида: tgt.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt и y=a.

3. Находим промежуток значений t, при которых тангенсоида располагается ниже прямой у=а. Левая граница этого промежутка всегда (-π/2), а правая arctg a

4. Записываем двойное неравенство для аргумента t, учитывая период тангенса Т=π (t будет между абсциссами(-π/2) и arctg a).

Решение тригонометрических неравенств графическим способом надежно страхует нас от ошибок только в том случае, если мы грамотно построим графики.

Построим графики функций y=tgx и у=1. Подробно рассмотрим построение тангенсоиды. Приготовим координатную плоскость хОу следующим образом:

единичный отрезок равен двум клеткам; так как значение π≈3,14, то π на горизонтальной оси Ох будет изображаться шестью клетками; половина π (это π/2) — тремя клетками. Одна клетка — это π/6; полторы клетки — это π/4; две клетки будут соответствовать аргументу π/3.

Мы знаем, что тангенс 90° не существует, а так как функция тангенса периодическая с наименьшим периодом, равным π, то не существует тангенс (90°+πn). Учтем это при построении графика и проведем две асимптоты: х= — π/2 и х=π/2.

Итак, в промежутке от — π/2 до π/2 тангенс будет «пробегать» все свои значения. Пользуясь значениями тангенса некоторых углов и свойством нечетности функции тангенса (график будет симметричен относительно начала координат), строим точки в приготовленной координатной плоскости, через которые и проведем тангенсоиду.

Построим прямую у=1.

Проведем ее параллельно оси Ох, выше на один единичный отрезок (выше на 2 клетки).

Прямая у=1 пересекает тангенсоиду в точке с координатами (π/4; 1).

Определяем промежуток значений х, при которых неравенство будет верным, т.е. внутри которого тангенсоида располагается ниже прямой у=1. Учтем, что неравенство нестрогое, значит, правый конец промежутка (π/4) входит во множество решений неравенства. Записываем решение в виде двойного неравенства. Ответ запишем в виде промежутка.

Отметим промежуток значений t, при которых точки тангенсоиды находятся ниже точек прямой у=1. Запишем этот промежуток в виде двойного неравенства. Затем перезапишем его для первоначального аргумента и выразим х. Ответ запишем в виде промежутка.

Отмечаем промежуток значений t, при которых неравенство верно. У нас нестрогое неравенство, значит, правый конец промежутка значений t также является решением неравенства. Возвращаемся к первоначальному аргументу и выражаем х. Ответ записываем в виде промежутка значений переменной х.

Рассмотрим тригонометрические неравенства вида: cost>a.

2. Строим в одной координатной плоскости tOy графики функций y=cost и y=a.

3. Находим такие две соседние точки пересечения графиков, между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса (t будет между найденными абсциссами).

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!) Построение синусоиды y=cosx рассматривается подробно в предыдущем уроке 10.2.3. Решение тригонометрических неравенств. Часть 3.

Пример 1.

Далее, по алгоритму, определяем те значения аргумента t, при которых синусоида располагается выше прямой. Выпишем эти значения в виде двойного неравенства, учитывая периодичность функции косинуса, а затем вернемся к первоначальному аргументу х.

Пример 2.

Выделяем промежуток значений t, при которых синусоида находится выше прямой.

Записываем в виде двойного неравенства значения t, удовлетворяющих условию. Не забываем, что наименьший период функции y=cost равен . Возвращаемся к переменной х, постепенно упрощая все части двойного неравенства.

Ответ записываем в виде закрытого числового промежутка, так как неравенство было нестрогое.

Пример 3.

Нас будет интересовать промежуток значений t, при которых точки синусоиды будут лежать выше прямой.

Значения t запишем в виде двойного неравенства, перезапишем эти же значения для и выразим х. Ответ запишем в виде числового промежутка.

И снова формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost>a.

Если cost>a, (-1≤а≤1), то — arccos a + 2πn a («10.2.2. Решение тригонометрических неравенств. Часть 2.»)

Продолжаем решать тригонометрические неравенства графическим способом. Рассмотрим неравенства вида cost:

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

3. Находим такие две соседние точки пересечения графиков, между которыми синусоида располагается ниже прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период косинуса Т=2π (t будет между найденными абсциссами).

Решение тригонометрических неравенств с помощью графиков надежно страхует нас от ошибок только в том случае, если мы грамотно построим синусоиду. (График функции y=cosx также называют синусоидой!)

Первое неравенство.

Преобразуем левую часть неравенства по формуле косинуса двойного аргумента:

Координатную плоскость готовим так же, как готовили для построения графика функции y=sinx. (10.2.1. Решение тригонометрических неравенств. Часть 1), т.е. единичный отрезок берем равным двум клеткам, тогда значение π изображаем равным шести клеткам и т.д. Вот так должна выглядеть координатная плоскость для построения синусоид:

Воспользуемся таблицей значений косинусов некоторых углов:

а также свойствами: графиков четных функций, непрерывностью и периодичностью функции косинуса. Отмечаем точки:

Проводим через эти точки кривую — график функции y=cosx.

Определяем промежуток значений х, при которых точки синусоиды лежат ниже точек прямой.

Учтем периодичность функции косинуса и запишем в виде двойного неравенства решение данного неравенства:

Находим абсциссы точек пересечения графиков, между которыми график косинуса лежит ниже прямой.

Концы этого промежутка тоже являются решениями неравенства, так как неравенство нестрогое.

Запишем решение в виде двойного неравенства для переменной t.

Подставим вместо t первоначальное значение аргумента.

Выразим х.

Ответ запишем в виде промежутка.

А теперь формула, которой вам следует воспользоваться на экзамене ЕНТ или ЕГЭ при решении тригонометрического неравенства вида cost

2. Строим в одной координатной плоскости tOy графики функций y=sint и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решаем первое неравенство:

Построение графика синуса мы рассмотрели подробно в занятии «10.2.1. Решение тригонометрических неравенств. Часть 1».

Учитывая периодичность функции синуса, запишем двойное неравенство для значений аргумента t, удовлетворяющий последнему неравенству. Вернемся к первоначальной переменной. Преобразуем полученное двойное неравенство и выразим переменную х. Ответ запишем в виде промежутка.

Решаем второе неравенство:

При решении второго неравенства нам пришлось преобразовать левую часть данного неравенства по формуле синуса двойного аргумента, чтобы получить неравенство вида: sint≥a. Далее мы следовали алгоритму.

Решаем третье неравенство:

Дорогие выпускники и абитуриенты! Имейте ввиду, что такие способы решения тригонометрических неравенств, как приведенный выше графический способ и, наверняка, вам известный, способ решения с помощью единичной тригонометрической окружности (тригонометрического круга) применимы лишь на первых этапах изучения раздела тригонометрии «Решение тригонометрических уравнений и неравенств». Думаю, вы припомните, что и простейшие тригонометрические уравнения вы вначале решали с помощью графиков или круга. Однако, сейчас вам не придет в голову решать таким образом тригонометрические уравнения. А как вы их решаете? Правильно, по формулам. Вот и тригонометрические неравенства следует решать по формулам, тем более, на тестировании, когда дорога каждая минута. Итак, решите три неравенства этого урока по соответствующей формуле.

Если sint>a, где -1≤a≤1, то arcsin a + 2πn 2 в точке x0=3. Сделать чертеж.

Запишем уравнение касательной к графику функции y=f (x) в точке с абсциссой x0 в общем виде:

Находим значение данной функции в точке с данной абсциссой:

f (x0)=f (3)=3 2 = 9 .

Находим производную f ‘(x)=(x 2 )’=2x и находим значение этой производной при х=3.

Тогда f ‘(x0)=f ‘(3)=2·3= 6 .

Подставим найденные значения

f (x0)= 9 и f ‘(x0)= 6 в уравнение касательной, получим:

y= 9 + 6 ·(x-3);

y= 6 x-9 — искомое уравнение касательной.

Ответ: y= 6 x-9.

2. Написать уравнение касательной к графику функции

Записываем общее уравнение касательной: y=f (x0) +f ‘(x0)(x-x0). Находим значение данной функции в точке х=1, получаем:

f (x0)=f (1) = 1 . Найдем производную данной функции по формуле производной степени:

f ‘(x)=(x -2 )=-2x -2-1 =-2x -3 .

Находим значение этой производной при х=1.

f ‘(x0)=f (1)=-2·(1) -3 = -2 . Подставляем найденные значения в общее уравнение касательной:

y= 12 (x-1);

y= -2 x+3 — искомое уравнение касательной.

Ответ: y=- 2 x+3.

10.3. Производная и ее геометрический смысл

В координатной плоскости хОу рассмотрим график функции y=f (x). Зафиксируем точку М(х0; f (x0)). Придадим абсциссе х0 приращение Δх. Мы получим новую абсциссу х0+Δх. Это абсцисса точки N, а ордината будет равна f (х0+Δх). Изменение абсциссы повлекло за собой изменение ординаты. Это изменение называют приращение функции и обозначают Δy.

Δy=f (х0+Δх) — f (x0). Через точки M и N проведем секущую MN, которая образует угол φ с положительным направлением оси Ох. Определим тангенс угла φ из прямоугольного треугольника MPN.

Пусть Δх стремится к нулю. Тогда секущая MN будет стремиться занять положение касательной МТ, а угол φ станет углом α. Значит, тангенс угла α есть предельное значение тангенса угла φ:

Определение производной. Предел отношения приращения функции к приращению аргумента, при стремлении последнего к нулю, называют производной функции в данной точке:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох:

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4, а новое —4,01.

Новое значение аргумента х=х0+Δx. Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх=4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х0+Δх) — f (x0). Так как у нас функция y=x 2 , то Δу=(х0+Δx) 2 — (х0) 2 =(х0) 2 +2x0 · Δx+(Δx) 2 — (х0) 2 =2x0 · Δx+(Δx) 2 =

=2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх=0,01; приращение функции Δу=0,0801.

Можно было приращение функции найти по-другому: Δy=y (х0+Δx) -y (х0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х0, если f ‘(х0) = 1.

Решение.

Значение производной в точке касания х0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f ‘(х0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45°.

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n )’ = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой «у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

www.mathematics-repetition.com